How To Design Successful Public Education Programs

Long Beach Leads Nation in AP Access

Data from the Washington, D.C.-based Council of the Great City Schools depict Long Beach as a national leader in providing students greater access to Advanced Placement college preparatory courses.

CGCS is a coalition of 74 of the nation’s largest urban public school systems, including Long Beach.  A 235-page “Academic Key Performance Indicators” report looked at 48 of the nation’s largest school systems and found that the Long Beach Unified School District:

• Ranked first nationally on the percentage of African American male students who took one or more AP courses;

• Ranked second on the overall percentage of students who took one or more AP courses;

• Ranked second on the percentage of Hispanic male students who took one or more AP courses;

• Ranked second on the percentage of reduced price lunch students who took one or more AP courses (students receive free or reduced price meals when they live in lower-income households);

• Ranked second on the percentage of students with disabilities who took one or more AP courses.

“Great City School districts that have embraced the challenge of educating America’s urban children have recognized the value of benchmarking their performance and growth against the progress of others,” states the report, which examined AP data from the  2016-17 school year.

Last spring, LBUSD students registered for nearly 15,000 Advanced Placement college level exams, an all-time high for the school district and a 6.1 percent increase over the prior year.  The number of AP exams taken last year was nearly double the amount take five years before.

LBUSD has made a concerted effort to boost access to AP courses and tests.  The school district provides students greater access to AP exams by covering the cost for families.  AP exams usually cost $92 each, but students here pay only $5 per exam for an unlimited number of exams.  The school district also expanded course sections on subjects such as AP Computer Science, AP Calculus, AP Seminar and AP Research.  AP coordinators and “pathway” coordinators have been added to help guide students toward college and career readiness.


What will music look like on Mars?

The Physics of Electronic Music: A Photo Essay By Bob Barboza

Music and science come together for the new visual jazz opera about the planet Mars.

Bob Barboza is selecting instruments for the “Occupy Mars Band Concert” in the USA.  He went to the NAMM Show in southern California to talk with musicians and instrument designers from around the world.   Some of the musicians will appear as soloists for Bob’s new visual jazz opera on the topics of  Mars and are we alone in the universe.  We continue to search for original compositions and writers on the topics of deep space and Mars.   For more information contact



IMG_2032 2.jpegIMG_2080.jpeg




I make robots using trash

When you live on the Cabo Verde Islands you have to use what you can find.  Bob Barboza has been working hard to inspire high school students to get creative and build robots with the materials that you can find on the islands.  This video is that of a Brooklyn, New York man who has a strong hobby of creating life-size robots out of trash.  I know this video is going to inspire you.   See what you can build.





Artificial​ Intelligence and Our Future

Artificial Intelligence Is Attracting Investors, Inventors, and Academic Researchers Worldwide

The researchers at the Barboza Space Center are paying close attention to how artificial intelligence will play a role in the future of going to school on Mars.  Our team will be exploring how AI can help on the Cabo Verde Islands.  This is the first of  a series of articles.  You might find this article by Sean Cavanagh interesting.


Senior Editor

If entrepreneurs and futurists are to be believed, artificial intelligence will have a transformative impact on many aspects of society–with uncertain implications for education.

A new report attempts to get beyond the prognostication and offer a precise gauge of where AI’s development stands right now, as judged by a variety of metrics across research and industry in the U.S. and internationally.

The AI Index 2018 Annual Report was produced by a group of researchers, led by Yoav Shoham, a professor emeritus of computer science at Stanford University. The measures in the report are not directly related to K-12 education, though some, such as the growth in venture capital and academic research, seem likely influence the development of AI in school settings.

One measure outlined in the report is the publication of AI-focused academic papers, where the release of research focused on artificial intelligence topics has outpaced the amount of published research on computer science over roughly the past two decades.

The interest in artificial intelligence in academia is not limited to the United States. Europe has consistently produced the largest number of AI papers, currently about 27 percent of them, according to the report, followed by China (25 percent) and United States (17 percent).  But the number of papers published in China jumped by 150 percent between 2007 and 2017.

About 30 percent of AI-focused patents originated in the U.S., the authors of the index say; Japan and South Korea hold the next-highest number, at 16 percent each. South Korea and Taiwan have shown the most growth in patents.

“We can assert that AI is global,” stated the researchers, who say the report is meant to serve as a “comprehensive resource” for the public, researchers, and others to “develop intuitions about the complex field of AI.”

Interest in AI has jumped by many other measures, too. Undergraduate course enrollments in AI and machine learning have risen in universities that have computer science programs–and not just in the United States. At China’s Tsinghua University, enrollment in AI and machine learning courses was 16 times greater in 2017 than it was in 2010.

Venture capitalists are also placing bets on AI. From 2015 to 2018, the number of AI-focused startups backed by venture capital more than doubled, outpacing the increases for the overall pool of startups:

VC spending on artificial intelligence








Economists and educators have speculated about how AI might influence not just teaching, but the future job market, and what schools need to do to prepare students to compete for careers. The AI Index shows a Artificial growth in the number of job openings with AI skill requirements.

Machine learning is the skill that is listed most often as a requirement, the report found. But deep learning–essentially work focused on imitating the human brain in processing data and creating patterns for decision-making–is the required skill growing at the fastest rate. It grew by 35 times between 2015 and 2017. Other AI-focused skills often required include natural language processing and robotics.

jobs requiring AI skills







Additionally, a growing number of companies in North America, China and other developing markets, and Europe are embedding “AI capabilities” in at least one function or business unit, says the report, citing a survey taken by McKinsey & Company.

Robotic process automation, machine learning, and conversational interfaces were among the AI capabilities cited most often.

This is the second year the index has been published. The new report, which was released in December, was broadened to include more data on AI’s presence outside North America.

Follow EdWeek Market Brief on Twitter @EdMarketBrief or connect with us on LinkedIn.

See also:


What will we eat while traveling in space?


Eating your veggies, even in space
by Staff Writers
Oslo, Norway (SPX) Jan 07, 2019

Wolff found that the plants can “smell” or detect how much nutrition is available when she ran experiments in climate-regulated growth chambers in the Netherlands. Photo: Silje Wolff

Fresh food is so attractive to astronauts that they toasted with salad when they were able to cultivate a few lettuce heads on the International Space Station three years ago.

In 2021, beans are on the menu to be grown in space, planted in high-tech planters developed at the Norwegian University of Science and Technology (NTNU).

“Astronauts like gardening and everything that reminds them of life on earth. They enjoy tending and watering the vegetables, and getting them to germinate,” says Silje Wolff, a plant physiologist at the Centre for Interdisciplinary Research in Space (CIRiS), which is part of NTNU Social Research.

Wolff has just completed an experiment that involved growing lettuce for space. The lettuce was planted in artificial soil made from lava rock. The goal is for the plants to grow directly in water that is supplemented with plant nutrients.

“The dream of every astronaut is to be able to eat fresh food – like strawberries, cherry tomatoes or anything that’s really flavorful. Someday that will certainly be possible. We envision a greenhouse with several varieties of vegetables,” says Wolff.

The longest stays at the International Space Station have been six months. People travelling to Mars will need to be prepared to stay in space for at least a year.

The European Space Agency plans to build a lunar base in 2030 as a stopover on the way to Mars. NASA plans to fly directly to the planet with a target landing date of 2030.

“The way space travel works today, it’s almost impossible to take along all the resources you need. That’s why we have to develop a biological system so astronauts can produce their own food, and recycle all of the resources,” says Wolff.

Today’s astronauts eat only freeze-dried and vacuum-packed foods.

“Astronauts struggle with having little appetite. They often lose weight. Addressing the psychological aspect of eating something fresh is one of our goals. Vacuum-packed food doesn’t really remind you of food. Having something fresh that triggers the appetite and the right receptors in the brain is important,” Wolff says.

NTNU and CIRiS are collaborating with Italian and French researchers in their quest to cultivate plant-based food for long space journeys.

CIRiS tests the new equipment made by NTNU’s technical workshop – very sophisticated planters that regulate all the water, nutrients, gas and air the plants need. In space, all the water and food has to be recovered. This means that plant fertilization needs to be as precise as possible.

Wolff has conducted experiments in climate-regulated growth chambers in the Netherlands as one aspect of this research.

Of all the nutrients plants use, they use nitrogen the most. During her experiments, Wolff looked at different nutrient doses and how they affected the plants’ water uptake.

“We found that plants can, in a way, ‘smell’ the amount of nutrients available to them. When the nitrogen concentration is very low, the plant will absorb more water and thus more nitrogen until it reaches an optimal level. The plant has a mechanism that turns on when the nitrogen level is adequate. Then it adjusts both nitrogen and water absorption down,” says Wolff.

Everything that can be tested on Earth has now been carried out. The next step is to grow beans in space to observe the effect of no gravity on plants’ ability to transport water and absorb nutrients. Simulating the absence of gravity can’t be done on Earth.

The beans are placed in a centrifuge to sprout and grow in the space station. The centrifuge is rotated to create different amounts of gravity.

“The art of getting something to grow in space can be transferred to our planet,” Wolff said. “This is how we create a setup that produces both the microgravity conditions in the space station and the 1-g force that exists on Earth.”

That will allow her to compare how the different gravitational levels affect the plants in space. On Earth, gravity causes warm air to rise while cold air sinks. In the space station, air is more stationary, causing astronauts to always have a low-grade fever. Plants are also affected.

“Stationary air affects a layer on the underside of the leaf where the stoma pores are located. When gravity disappears, the boundary layer in the slit-shaped apertures thickens. This reduces evaporation and causes the leaf temperature to increase. Water vapour diffusion to the environment is an important part of plant regulation and can be compared with sweating to cool the body in humans and animals,” says Wolff.

Food production in cities offers an opportunity to produce more food in the most sustainable way. Cities don’t have much soil for cultivation, but a lot becomes possible if you can plant directly in water in indoor closed systems where all aspects of the climate are regulated.

“Recycling and precise fertilization are key to achieving more sustainable food production. By growing plants directly in water with dissolved nutrients, fertilization and irrigation are much easier to control,” says Wolff.

“The plants become less sensitive to nutritional deficiency because the roots are in direct contact with the nutrients. They’re always able to access new nutrients through the water, and can use absolutely all the nutrients available – unlike with soil that binds the nutrients and affects their availability to the roots. And the roots don’t rot when the water is mixed with a little oxygen,” she says.

Research Report: Testing New Concepts for Crop Cultivation in Space: Effects of Rooting Volume and Nitrogen Availability Silje A. Wolff, Carolina F. Palma, Leo Marcelis, Ann-Iren Kittang Jost and Sander H. van Delden. Life 2018, 8(4), 45

Side Note:

Mars Related STEAM++ International Student projects:

Bob Barboza is testing the soil from the base of volcanoes and a team of high school Jr. astronauts are using the soil for growing plants for Mars.   The students of Pedro Pierce High School on the Island of Fogo, Republic of Cabo Verde and students from the Long Beach Unified School District are working with the Barboza Space Center in southern California.  This year the Barboza Space Center Tiger teams will be studying the growth of cucumbers and beans.


Mars Workshops

STEAM++ Presentations: Mars, Robots, and Fellowships

presented by

Bob Barboza

Founder/Director, Barboza Space Center

Thursday, January 24th, 2019

Huntington Beach, CA


The Barboza Space Center in Long Beach, California, offers international fellowship programs to inspire high school students in Cabo Verde and the USA to study science, technology, engineering, visual and performing arts, mathematics, computer languages, and foreign languages.  Using specially designed resources, international students work in teams to create prototypes of robots, satellites, Martian habitats, and Mars science landers.  The fellowships can take the form of workshops, summer camps, or after-school distance learning programs.

This presentation will demonstrate how students participate in NASA Tiger Teams and solve space science challenges simulating those faced by NASA, Boeing, and SpaceX.  Students prototype solutions using both humanoid and other robots, as well as astronaut toolkits containing science experiments particular to Mars.  Their work allows them to explore careers by actually doing work in the fields of space science, physics and robotics.

Bob Barboza is an educator, STEAM++ consultant, software and curriculum designer, astrosociologist, and founder and director of Kids Talk Radio Science as well as the Barboza Space Center.  Bob was the recipient of the 2018 Gohardani Presentation Award in Aeronautics and Astronautics presented by the Springs of Dreams Corporation and the American Institute of Aeronautics and Astronautics.

NOTE:  This program is part of a series co-sponsored by AIAA OC and Golden West College.  It will be held at Golden West College in the Technology Building, Room 102 (Building 19 in the campus map).  Free parking is available in Lot A and Lot B off of Goldenwest Street for guests who register online.  A parking permit for the evening of January 24th will be emailed to each online registrant.  The permit must be printed, placed in the vehicle on the driver’s side dashboard, and the vehicle must be parked in a white-lined “student” parking space (i.e., not “Staff” or metered).

Thursday, January 24th, 2019

Pizza and Drinks: 6:00 P.M

Presentation (free): 6:30 P.M.

Q and A: 7:15-8:00 P.M.



Golden West College, Technology Building (Building 19), Room 102, Huntington Beach, CA  92647


$3 for pre-registered AIAA Members and Golden West Persons,

$5 for others, Free for presentation-only attendees

Please Note:  We cannot accept cash at the door.  Only paid pre-registered people may come in before 6:25 pm.  There is no restriction on who may attend; just sign up by Tuesday, January 22nd at 5:00 P.M.  Please register, even just for the free presentation, to assure that seating is provided.


Registration deadline is:

Tuesday, January 22nd, 2019, at 5:00 P.M.


Link to Event Website and Registration

We have noticed that PayPal will deny a credit card if there is a middle initial or name on the card and it is not provided on the PayPal form.  It can be appended to the line asking for a first name.