Robot Showcase Coming on Aug 25, 2018

Long Beach Robot Showcase 2018.jpeg

 

 

Bob Barboza, Founder/Director

Barboza Space Center

Kids Talk Radio Science

1857 Josie Ave.

Long Beach, CA 90815

(562) 221-1780 Cell

Suprschool@aol.com

Bob.Barboza@gmail.com

http://www.BarbozaSpaceCenter.com

www.KidsTalkRadioSciene.WordPress.com

Sample Robot Podcast:  https://youtu.be/C_HsvHSPUR8

All of our Videos:  https://www.youtube.com/user/KidsTalkRadio

Advertisements

Designing Rovers for Mars

36 Student Teams Roll on to URC 2018 Finals

From a record field of 95 student teams, the University Rover Challenge (URC) has announced the 36 team finalists from 10 countries which have been selected to compete May 31 – June 2 at the Mars Society’s Mars Desert Research Station (MDRS) in southern Utah.  [To watch the official video announcement (produced courtesy of Protocase), please click here.]

Teams previously passed a Preliminary Design Review milestone, and most recently passed an extremely competitive System Acceptance Review milepost. Vehicles competing at the URC finals will face four extremely difficult tasks involving their Mars rovers: 1) The Extreme Retrieval and Delivery Task, 2) The Equipment Servicing Task, 3) The Autonomous Traversal Task, and 4) The Science Cache Task.  These events challenge teams to design and build highly capable robotic systems able to traverse extreme and aggressive terrain, perform maintenance on critical field equipment and conduct meaningful field science.

Now in its 12th year, URC has challenged hundreds of teams and thousands of students from around the world through this unique multi-disciplinary educational event.  In recent years URC’s parent organization, the Mars Society, has formed the Rover Challenge Series (RCS), which features similar competitions around the world aimed at developing the next generation of talented and ambitious leaders in engineering, science and space exploration.

The Mars Society would like to express its appreciation to URC’s primary sponsor – Protocase – for once again producing this year’s video announcement. As always, we would also like to thank Kevin Sloan, our long-time URC Director, and his staff of volunteers for all of their hard work in planning and coordinating this important scientific competition.

A full review of this year’s University Rover Challenge will be presented at the 21st Annual International Mars Society Convention (August 23-26) in Pasadena, California. Register onlinetoday to take advantage of ‘Early Bird’ ticket rates.

How To Get People Excited About Mars?

Mission Summary – Crew 190

 

It’s been twelve SOLs that Crew 190 landed on Mars. They rapidly settled down in the Hab and got to work. Quickly they learned to live with each other. A bit formally, we distinguish in this report five main activities that had been shared and managed during the time living in the station (see Figure 1): scientific work, team management, housework, EVAs and social activities.

SCIENTIFIC WORK

Scientific challenge was the main motivation of our stay at the MDRS. On a typical daily schedule, it usually primes on the rest of the activities. In this section, we provide a summary of the objectives and outcomes amongst the several experiments that were initially planned by the crew. Here we briefly present our different experiments.

Psychological and emotional aspects are paramount in this kind of mission. Martin Roumain, the Health and Safety Officer and biomedical researcher, evaluated the impact of confinement by monitoring short-term memory and reflexes throughout the mission. He also studied the accelerated degradation of drugs by the Martian environment using a spectrophotometer (Figure 2). This device has also been used by Maximilien Richald, chemist and Crew Commander of this mission. Maximilien focused on the chemical profile of Martian soil in view of an eventual use in agriculture. Food self-sufficiency being essential for long duration space missions, Mario Sundic, botanist and GreenHab Officer, has designed a vertical hydroponic system, reducing the water needs thanks to this closed circuit. Frédéric Peyrusson, Crew Biologist, tested the benefits of hydrogels on plants growth. Moreover, he studied the ability of known bacteria to resist to a harsh environment and figured out the biocompatibility of terrestrial life on Mars. Our second Biologist, Ariane Sablon (Figure 2), isolated fermentating bacteria from human saliva in view of making possible the preparation of sourdough bread in situ. Bastien Baix, the Crew Engineer, created a self-made 3D-map of the station and its surroundings using an aerial drone. Our physicist and Crew Astronomer Sophie Wuyckens, also contributed to terrain analysis by setting up a method based on cosmic radiations measurements (Figure 3). She was also in charge of the Musk Observatory. All these experiments needed to be perfectly coordinated. That was the role of Michael Saint-Guillain, the computer scientist and Executive Officer, who designed an algorithm that helped the scheduling of the various experiments conducted by the crew members.

Figure 3: Sophie Wuyckens working on her muon detector, inside the RAM module.

Besides the experiments, extravehicular activities (EVAs) required a significant amount of time. Of critical importance for some experiments, the EVAs also revealed a positive impact on the mental of the entire team and unique opportunities to contemplate the scenic martian landscape.

TEAM MANAGEMENT

Even though we stayed only a couple of weeks, such a mission requires sound organisation and systematical rescheduling. At the center of our eight people crew, the commandant Maximilien Richald had the hard responsibility of managing the entire team in a holistic way, dealing with all dimensions of the mission : experiments, housework, social behavior… Which had to be discussed during daily team meeting (Figure 4).

Coordination of the scientific operations (including EVAs, manipulations in the ScienceDome, solar observations, homework) had been closely monitored by Michael Saint-Guillain. At the end of each day, just before the CapCom, the scientific outcomes were used as input to the scheduling algorithm which was then used to recompute a schedule for the rest of the mission.

HOUSEWORKING

As part of a large team enclosed in a quite small living space, we all recognized the critical importance of well-balanced houseworking. The time required for meal preparation should not be underestimated, as we are cooking with unusual freeze-dried ingredients, which, by the way, did not prevent us from cooking some masterpieces (Figure 5) !

 

SOCIAL ACTIVITIES

Last but not least, it is worth to mention that social activities definititly contributed to the success of the mission. Even with the best team composition, maintaining a good mood is not trivial and has a significant impact on the global outcomes of the mission. Fortunately, the Mars Society staffed the MDRS with a few interesting games, as the one we played on Figure 6 (left). On the right in Figure 6, we even observe a singular birthday event, quite uncommon on Mars !

Helping Hollywood with Movie Promotions

Pacific Rim Uprising at East LA Rising

The kids of the “East L.A. Rising”, formerly known as the Boys and Girls Club of East LA, were in for a big treat this past Tuesday. CSU Long Beach Robotics Professor Walter Martinez Marconi and Barboza Space Center founder Bob Barboza hosted an interactive and informative robots themed special event base on Universal Pictures’ upcoming film, Pacific Rim Uprising, directed by Steven S. DeKnight, coming out Friday March 23rd. “It’s not only fun, exciting, and inspiring for our kids to be exposed to robotics”, stated Anna Araujo the Executive Director of East L.A. Rising, “it’s our responsibility to nuture our kids’ interest in the sciences. Unfortunately, low income kids have significantly less internet and technological access, as well as exposure to these types of special events that help them correlate STEM (Science, Technology, Engineeribg, and Math) education with career opportunities. Access to technology is becoming a civil rights issue of our time”, claimed Araujo, “and these type of events are vital to ensure our kids will be well prepared for tomorrow world”.

 

The highly anticipated sequel, Uprising, flashes forward 10 years from the first Pacific Rim and follows the rebellious Jake Pentecost, a once promising Jaeger pilot whose legendary father gave his life to secure humanity’s victory against the monstrous “Kaiju”. Young Jaeger pilots have only known a world of chaos and Jake has since abandoned his training only to become caught up in a criminal underworld. But when an even more unstoppable threat is unleashed to tear through cities and bring the world to its knees, he is given one last chance to live up to his father’s legacy with his estranged sister, Mako Mori, who is leading a brave new generation of pilots that have grown up in the shadow of war. As they seek justice for the fallen, their only hope is to reunite together in a global uprising against the force of extinction.

Learning About Spacesuits

Spacesuit



A spacesuit is a pressurized garment worn by astronauts during space flights. It is designed to protect them from the potentially damaging conditions experienced in space. Spacesuits are also known as Extravehicular Mobility Units (EMUs) to reflect the fact that they are also used as mobility aides when an astronaut takes a space walk outside of an orbiting spacecraft. They are composed of numerous tailor-made components that are produced by a variety of manufacturers and assembled by the National Aeronautics Space Agency (NASA) at their headquarters in Houston. The first spacesuits were introduced during the 1950s when space exploration began. They have evolved overtime becoming more functional and complicated. Today, NASA has 17 completed EMUs, each of which cost over $10.4 million to make.

Background

On Earth, our atmosphere provides us with the environmental conditions we need to survive. We take for granted the things it provides such as air for breathing, protection from solar radiation, temperature regulation and consistent pressure. In space, none of these protective characteristics are present. For example, an environment without consistent pressure doesn’t contain breathable oxygen. Also, the temperature in space is as cold as -459.4° F (-273° C). For humans to survive in space, these protective conditions had to be synthesized.

A spacesuit is designed to re-create the environmental conditions of Earth’s atmosphere. It provides the basic necessities for life support such as oxygen, temperature control, pressurized enclosure, carbon dioxide removal, and protection from sunlight, solar radiation and tiny micrometeoroids. It is a life-support system for astronauts working outside Earth’s atmosphere. Spacesuits have been used for many important tasks in space. These include aiding in payload deployment, retrieval and servicing of orbiting equipment, external inspection and repair of the orbiter, and taking stunning photographs.

History

Spacesuits have evolved naturally as technological improvements have been made in areas of materials, electronics and fibers. During the early years of the space program, spacesuits were tailor made for each astronaut. These were much less complex than today’s suits. In fact, the suit worn by Alan Shepard on the first U.S. suborbital was little more than a pressure suit adapted from the U.S. Navy high-altitude jet aircraft pressure suit. This suit had only two layers and it was difficult for the pilot to move his arms or legs.

The next generation spacesuit was designed to protect against depressurization while the astronauts were in an orbiting spacecraft. However, space walks in these suits were not possible because they did not protect against the harsh environment of space. These suits were made up of five layers. The layer closest to the body was a white cotton underwear that had attachments for biomedical devices. A blue nylon layer that provided comfort was next. On top of the blue nylon layer was a pressurized, black, neoprene-coated nylon layer. This provided oxygen in the event that cabin pressure failed. A Teflon layer was next to hold the suit’s shape when pressurized, and the final layer was a white nylon material that reflected sunlight and guarded against accidental damage.

For the first space walks that occurred during the Gemini missions in 1965, a seven layer suit was used for extra protection. The extra layers were composed of aluminized Mylar, which provided more thermal protection and protection from micrometeoroids. These suits had a total weight of 33 lb (15 kg). While they were adequate, there were certain problems associated with them. For example, the face mask on the helmet quickly fogged so vision was hampered. Also, the gas cooling system was not adequate because it could not remove excessive heat and moisture quickly enough.

Sally Ride

Sally Ride

Sally Ride is best known as the first American woman sent into outer space. Both scientist and professor, she has served as a fellow at the Stanford University Center for International Security and Arms Control, a member of the board of directors at Apple Computer Inc., and a space institute director and physics professor at the University of California at San Diego. Ride has chosen to write primarily for children about space travel and exploration.

Sally Kristen Ride is the older daughter of Dale Burdell and Carol Joyce (Anderson) Ride of Encino, California, and was born May 26, 1951. As author Karen O’Connor describes tomboy Ride in her young reader’s book, Sally Ride and the New Astronauts, Sally would race her dad for the sports section of the newspaper when she was only five years old. An active, adventurous, yet also scholarly family, the Rides traveled throughout Europe for a year when Sally was nine and her sister Karen was seven. While Karen was inspired to become a minister, in the spirit of her parents, who were elders in their Presbyterian church, Ride’s own developing taste for exploration would eventually lead her to apply to the space program almost on a whim. “I don’t know why I wanted to do it,” she confessed to Newsweek prior to embarking on her first spaceflight.

The opportunity was serendipitous, since the year she began job-hunting marked the first time NASA had opened its space program to applicants since the late 1960s, and the very first time women would not be excluded from consideration. Ride became one of thirty-five chosen from an original field of applicants numbering eight thousand for the spaceflight training of 1978. “Why I was selected remains a complete mystery,” she later admitted to John Grossmann in a 1985 interview in Health. “None of us has ever been told.”

Ride would subsequently become, at thirty-one, the youngest person sent into orbit as well as the first American woman in space, the first American woman to make two space-flights, and, coincidentally, the first astronaut to marry another astronaut in active duty.

Ride left NASA in 1987 for Stanford’s Center for International Security and Arms Control, and two years later she became director of the California Space Institute and physics professor at the University of California at San Diego.

The Apollo missions utilized more complicated suits that solved some of these problems. For moon walks, the astronauts wore a seven layer garment with a life-support backpack. The total weight was about 57 lb (26 kg). For the Space Shuttle missions, NASA introduced the Extravehicular Mobility Unit (EMU). This was a spacesuit designed for space walks that did not require a connection to the orbiter. One primary difference in these suits was that they were designed for multiple astronaut use instead of being custom made like the previous spacesuits. Over the last 20 years, the EMUs have undergone steady improvements however, they still look the same as they did when the shuttle program began in 1981. Currently, the EMU has 14 layers of protection and weighs over 275 lb (125 kg).

Raw Materials

Numerous raw materials are used for constructing a spacesuit. Fabric materials include a variety of different synthetic polymers. The innermost layer is made up of a Nylon tricot material. Another layer is composed of spandex, an elastic wearable polymer. There is also a layer of urethane-coated nylon, which is involved in pressurization. Dacron—a type of polyester—is used for a pressure-restraining layer. Other synthetic fabrics used include Neoprene that is a type of sponge rubber, aluminized Mylar, Gortex, Kevlar, and Nomex.

Beyond synthetic fibers other raw materials have important roles. Fiberglass is the primary material for the hard upper torso segment. Lithium hydroxide is used in making the filter which removes carbon dioxide and water vapor during a space walk. A silver zinc blend comprises the battery that powers the suit. Plastic tubing is woven into the fabric to transport cooling water throughout the suit. A polycarbonate material is used for constructing the shell of the helmet. Various other components are used to make up the electronic circuitry and suit controls.

Design

A single EMU spacesuit is constructed from various tailor-made components produced by over 80 companies. The size of the parts vary ranging from one-eighth-inch washers to a 30 inch (76.2 cm) long water tank. The EMU consists of 18 separate items. Some of the major components are outlined below.

The primary life support system is a self-contained backpack that is fitted with an oxygen supply, carbon-dioxide removal filters, electrical power, ventilating fan and communication equipment. It provides the astronaut with most of the things needed to survive such as oxygen, air purification, temperature control and communication. As much as seven hours worth of oxygen can be stored in the suit’s tank. A secondary oxygen pack is also found on the suit. This provides an additional 30 minutes of emergency oxygen.

The helmet is a large plastic, pressurized bubble that has a neck ring and a ventilation distribution pad. It also has a purge valve, which is used with a secondary oxygen pack. In the helmet, there is a straw to a drink bag in case the astronaut gets thirsty, a visor which shields rays from the bright sun, and a camera which records extra vehicular activities. Since space walks can last over seven hours at a time, the suit is fitted with a urine collection system to allow for bathroom breaks. The MSOR assembly attaches to the outside of the helmet. This device (also known as a “Snoopy Cap”) snaps into place with a chin strap. It consists of headphones and a microphone for two way communication. It also has four small “head lamps” which shine extra light where needed. The visor is manually adjusted to shield the astronaut’s eyes.

To maintain temperature, a liquid cooling and ventilation garment is worn under the outer garment. It is composed of cooling tubes, which have fluid flowing through them. The undergarment is a mesh one-piece suit composed of spandex. It has a zipper to allow for front entry. It has over 300 ft of plastic tubing intertwined within which it circulates cool water. Normally, the circulating water is maintained from 40-50° F (4.4-9.9° C). The temperature is controlled by a valve on the display control panel. The lower garment weighs 8.4 lb (3.8 kg) when loaded with water.

The lower torso assembly is made up of the pants, boots, “brief unit, knee and ankle joints and the waist connection. It is composed of a pressure bladder of urethane-coated nylon. A restraining layer of Dacron and an outer thermal garment composed of Neoprene-coated nylon. It also has five layers of aluminized Mylar and a fabric surface layer composed of Teflon, Kevlar, and Nomex. This part of the suit can be made shorter or longer by adjusting the sizing rings in the thigh and leg section. The boots have an insulated toe cap to improve heat retention. Thermal socks are also worn. The urine storage device is also located in this section of the suit. Old models could hold up to 950 milliliters of liquid. Currently, a disposable diaper type garment is used.

The arm assembly is adjustable just like the lower torso assembly. The gloves contain

miniature battery-powered heaters in each finger. The rest of the unit is covered by padding and an additional protective outer layer.The hard upper torso is constructed with fiberglass and metal. It is where most of the suit pieces attach including the helmet, arms, life support system display, control module and lower torso. It includes oxygen bottles, water storage tanks, a sublimator, a contaminant control cartridge, regulators, sensors, valves, and a communications system. Oxygen, carbon dioxide and water vapor leave the suit through the ventilation garment near the astronaut’s feet and elbows. A drinkbag in the upper torso can hold as much as 32 oz (907.2 g) of water. The astronaut can take a drink through the mouthpiece that extends into the helmet.

Chest mounted control module lets the astronaut monitor the suit’s status and connect to external sources of fluids and electricity. It contains all the mechanical and electrical operating controls and also a visual display panel. A silver zinc, rechargeable battery which operates at 17 volts is used to power the suit. This control module is integrated with the warning system found in the hard upper torso to ensure that the astronaut knows the status of the suit’s environment. The suit connects to the orbiter through an umbilical line. It is disconnected prior to leaving the airlock.

The white suit weighs about 275 lb (124.8 kg) on earth and has a product life expectancy of about 15 years. It is pressurized to 4.3 lb (1.95 kg) per square inch and can be recharged by hooking up directly to the orbiter. The existing

The primary life support system is a self-contained backpack that is fitted with an oxygen supply, carbon-dioxide removal filters, electrical power, ventilating fan, and communication equipment.

The primary life support system is a self-contained backpack that is fitted with an oxygen supply, carbon-dioxide removal filters, electrical power, ventilating fan, and communication equipment.

spacesuits are modular so they can be shared by multiple astronauts. The four basic interchangeable sections include the helmet, the hard upper torso, the arms and the lower torso assembly. These parts are adjustable and can be resized to fit over 95% of all astronauts. Each set of arms and legs comes in different sizes which can be fine-tuned to fit the specific astronaut. The arms allow for as much as a one inch adjustment. The legs allow for up to a three inch adjustment.It takes about 15 minutes to put on the spacesuit. To put the spacesuit on the astronaut first puts on the lower garment that contains the liquid cooling and ventilation system. The lower torso assembly is put on next with the boots being attached. Next, the astronaut slides into the upper torso unit which is mounted with the life-support backpack on a special connector in the airlock chamber. The waste rings are connected and then the gloves and helmet are put on.

The Manufacturing
Process

The manufacture of a spacesuit is a complicated process. It can be broken down into two phases of production. First the individual components are constructed. Then the parts are brought together in a primary manufacture location, such as NASA headquarters in Houston, and assembled. The general process is outline as follows.

Helmet and visor assembly

  • 1 The helmet and visor may be constructed using traditional blow molding techniques.
    An EMU is made of 14 protective layers. Fabric materials include a variety of different synthetic polymers. The innermost layer is a Nylon tricot material. Another layer is composed of spandex, an elastic wearable polymer. There is also a layer of urethane-coated nylon, which is involved in pressurization. Dacron—a type of polyester—is used for a pressure-restraining layer. Other synthetic fabrics used include Neoprene that is a type of sponge rubber, aluminized Mylar, Gortex, Kevlar, and Nomex.

    An EMU is made of 14 protective layers. Fabric materials include a variety of different synthetic polymers. The innermost layer is a Nylon tricot material. Another layer is composed of spandex, an elastic wearable polymer. There is also a layer of urethane-coated nylon, which is involved in pressurization. Dacron—a type of polyester—is used for a pressure-restraining layer. Other synthetic fabrics used include Neoprene that is a type of sponge rubber, aluminized Mylar, Gortex, Kevlar, and Nomex.

    Pellets of polycarbonate are loaded into a injection-molding machine. They are melted and forced into a cavity which as the approximate size and shape of the helmet. When the cavity is opened, the primary piece of the helmet is constructed. A connecting device is added at the open end so the helmet can be fastened to the hard upper torso. The ventilation distribution pad is added along with purge valves before the helmet is packaged and shipped. The visor assembly is similarly fitted with “head lamps” and communication equipment.

Life-support systems

  • 2 The life support systems are put together in a number of steps. All the pieces are fitted to the outer backpack housing. First, the pressurized oxygen tanks are filled, capped, and put into the housing. The carbon dioxide removal equipment is put together. This typically involves a filter canister that is filled with lithium hydroxide which gets attached to a hose. The backpack is then fitted with a ventilating fan system, electrical power, a radio, a warning system, and the water cooling equipment. When completely assembled, the life support system can attach directly to the hard upper torso.

Control module

  • 3 The key components of the control module are built in separate units and then assembled. This modular approach allows key parts to be easily serviced if necessary. The chest mounted control module contains all of the electronic controls, a digital display and other electronic interfaces. The primary purge valve is also added to this part.

Cooling garment

  • 4 The cooling garment is worn inside the pressure layers. It is made out of a combination of nylon, spandex fibers and liquid cooling tubes. The nylon tricot is first cut into a long underwear-like shape. Meanwhile, the spandex fibers are woven into a sheet of fabric and cut into the same shape. The spandex is then fitted with a series of cooling tubes and then sewn together with the nylon layer. A front zipper is then attached as well as connectors for attachment to the life support system.

Upper and lower torso

  • 5 The lower torso, arm assembly, and gloves are made in a similar manner. The various layers of synthetic fibers are woven together and then cut into the appropriate shape. Connection rings are attached at the ends and the various segments are attached. The gloves are fitted with miniature heaters in every finger and covered with insulation padding.
  • 6 The hard upper torso is forged using a combination of fiberglass and metal. It has four openings where the lower torso assembly, the two arms, and the helmet attach. Additionally, adapters are added where the life support pack and the control module can be attached.

Final assembly

  • 7 All the parts are shipped to NASA to be assembled. This is done on the ground where the suit can be tested prior to use in space.

Quality Control

The individual suppliers conduct quality control tests at each step of the production process. This ensures that every part is made to exacting standards and will function in the extreme environment of space. NASA also conducts extensive tests on the completely assembled suit. They check for things such as air leakage, depressurization, or nonfunctional life support systems. The quality control testing is crucial because a single malfunction could have dire consequences for an astronaut.

The Future

The current EMU design is the result of many years of research and development. While they are a powerful tool for orbital operations, many improvements are possible. It has been suggested that the spacesuit of the future may look dramatically different than the current suit. One area that can be improved is the development of suits that can operate at higher pressures than the current EMU. This would have the advantage of reducing time currently required for prebreathing prior to a space walk. To make higher pressure suits improvements will have to be made in the connecting joints on each part of the suit. Another improvement can be in the resizing of the suit in orbit. Currently, it takes a significant amount of time to remove or add extending inserts in the leg and arm areas. One other possible improvement is in the electronic controls of the suit. What now requires complex command codes will be done with the push of a single button in the future.

Where to Learn More

Books

Suited for Spacewalking. NASA, 1998.

Other

Hamilton-Standard Company. http://www.hamilton-standard.com/ .

Perry Romanowski

Read more: http://www.madehow.com/Volume-5/Spacesuit.html#ixzz59BvQ6abR