Calling Scientists of all Colors

Black, Hispanic, and Native American scientists and engineers are needed to solve important problems
AUG 24, 2017 — 8:00 AM EST
jet, dropsonde

DaNa Carlis flew in a jet about 13,700 meters (45,000 feet) above the Pacific Ocean, near Hawaii, to gather weather data. Here, he is about to release an instrument called a dropsonde to measure factors such as temperature and wind speed.


This is the first in a two-part Cool Jobs series on the value of diversity in science, technology, engineering and mathematics. It has been made possible with generous support from Arconic Foundation.

When Gillian Bowser was a kid in Brooklyn, N.Y., she loved exploring the borough’s botanic garden and museum. She remembers them as “the two most magical places on Earth.” And a favorite spot was the garden’s display of tiny bonsai trees. They were so small that they seemed to be made for fairies.

At first, Bowser wanted to be a medical illustrator, a person who draws the human body. She liked sketching animals. But in a medical illustration class in college, she proved better at drawing dragons than people. Her teacher suggested that perhaps medical illustration wasn’t the career for her. Maybe she should consider science, her teacher said. So Bowser joined a biology lab and studied the African striped mouse. This rodent with orange-tinged ears “was the cutest little booger,” she says.

Gillian Bowser (right) and two students conduct a BioBlitz in Bandelier National Monument in New Mexico. The goal of the project is to identify as many species as possible in 24 hours.
William A. Cotton/CSU Photography

In time, Bowser became an ecologist, someone who investigates links between animals, plants and their surroundings. She has worked with a “wacky variety” of species, including prairie dogs and desert tortoises. For one project, Bowser and two colleagues wanted to know where U.S. elk and bison got their nutrition in winter. So the team collected snowballs of frozen urine the animals left behind in Yellowstone National Park. Other people working at the park gave the researchers a fitting nickname, she recalls: the “Pee Amigos.”

Today, Bowser is a research scientist at Colorado State University in Fort Collins. She monitors butterflies and other insects in national parks around the world. One of her projects is in the Andes Mountains of Peru. There, she studies how a glacier’s retreat affects insects such as dragonflies and bumblebees.

Being a scientist is a great job for curious people, Bowser says. “If you like asking questions, science is the perfect field,” she says. “We’re always exploring.”

Bowser is African-American, and one of about 700,000 black, Hispanic and Native American scientists and engineers in the United States. They do everything from predicting weather to writing computer programs that simulate biological molecules. These minorities are what researchers call “underrepresented” groups in science, technology, engineering and math (STEM). The reason: Even though the combined number of black, Hispanic and Native American people in the United States is high, they hold relatively few of the degrees and jobs in these fields.

STEM fields need smart, talented people. They need many such people — and it helps when these workers have a broad range of different experiences and perspectives. So when members of minority groups are left out, research may not advance as quickly or as effectively. Consider the main story line in the book and movie Hidden Figures: A black female mathematician makes important contributions to a NASA team by performing very complex computations needed to ensure the safety of astronauts.

Some research even suggests that when groups have to solve problems, diversity is more important than skill. So increasing the number of minorities in STEM could help the world tackle hard issues better, such as climate change and disease.

“We need the best talent we can get,” says Shirley Malcom. She heads the education and human resources programs at the American Association for the Advancement of Science (AAAS) in Washington, D.C. She argues: “We need people who are coming at problems from a lot of different directions.”

Story continues below video.

Science, technology, engineering and math — or STEM — fields will benefit from inputs that reflect a diversity of viewpoints, experiences and cultures.

A different standard

Blacks, Hispanics and Native Americans make up nearly one-third of the U.S. population. But their numbers in science and engineering are far lower. These American minority groups earn only 20 percent of bachelor’s degrees in STEM. They hold 11 percent of the jobs in these fields. And they obtain a mere 8 percent of PhDs in science and engineering.

Why might this be happening? Well, maybe students from these backgrounds just don’t like science and engineering. But “that’s not true,” Malcom says. For instance, consider the results of a 2016 survey. It suggested that black, Hispanic and Native American first-year college students were nearly as interested as white and Asian students in STEM majors. The data were collected by the Higher Education Research Institute at the University of California, Los Angeles.

So several other factors might instead explain the trend. Students in underrepresented minority groups simply may not be encouraged to study science and engineering. If their schools don’t offer good STEM classes, the students may arrive at college less prepared than their classmates. And people may assume — without even realizing it — that black, Hispanic or Native American researchers aren’t as smart as white researchers. This thinking, called implicit bias, also can make employers less likely to hire a minority scientist or engineer.

Minority researchers often are judged by a different standard, Malcom says.

That sounds pretty depressing. But many hard-working, passionate minority scientists and engineers have succeeded. For some, they meet an inspiring mentor or teacher. When they run into trouble, they ask for help. And new programs at universities are now attempting to jumpstart students’ progress.

Story continues below video.

Bowser led a BioBlitz to encourage minority students to participate in science.
Colorado State University

Someone to look up to

The path to science can start with a strong role model. That was the case for DaNa Carlis. He grew up in Tulsa, Okla. His best friend’s father was a doctor — the only black physician Carlis knew. The doctor often bragged about how smart he was. “You would think he was Einstein,” Carlis says. “But to me, he was Einstein!”

jet, wetsuit
DaNa Carlis flew on a jet mission over Hawaii to gather data for weather prediction. Here, he is trying on a wetsuit just in case the plane goes down.
D. Carlis

Carlis eventually became a meteorologist, a scientist who studies weather patterns. For one project in Hawaii, he helped write computer programs to predict events such as flash floods. These dangerous events can occur after heavy rains. He now works at the National Oceanic and Atmospheric Administration (NOAA) in Silver Spring, Md.

Seeing his friend’s successful dad made Carlis feel confident that he could excel in science. “If you see it, you can be it,” he says.

If kids don’t know any scientists of their race or ethnicity, they may have to get creative. For example, they might read books or watch movies about minority scientists, such as Hidden Figures.

Students also can find programs where they might meet role models. For instance, Black Girls Code offers workshops around the country to teach girls about computer programming. Many federal science agencies run summer activities and internships. Bowser co-founded a program called the Rocky Mountain Sustainability and Science Network. Many minority college students have taken part. Students in it have, among other things, shot videos in national parks of butterflies, bees, flies and spiders.

Staying on track

Sometimes, just a small nudge can help minority students succeed. That’s what school administrators at Georgia State University (GSU) in Atlanta have found.

In 2003, the school’s black and Hispanic students were about 20 to 30 percent less likely to graduate within six years than were white students. Some of these minority students were the first in their family to attend college. So they might have had less guidance from parents than would their peers from more educated families. Many also had gone to high schools that didn’t prepare them well in science and math.

Timothy Renick wanted to close that gap. He is in charge of GSU programs for student success. Renick’s team analyzed 10 years of student records. They linked about 800 types of events with problems later in school. For example, science students who got a C in their first chemistry class had only a 40 percent chance of graduating on time.

That list of events became the core of a new plan. In 2012, GSU started tracking all those factors for every student. If one of the 800 incidents occurred, an advisor quickly offered the student tips. For instance, a student who failed a math test might be directed to the math tutoring center.

Renick compares GSU’s new program to the global positioning system, or GPS, that can provide driving directions in real time. In the past, no one noticed if students made a wrong turn. Many of those students eventually failed classes or dropped out. But the new tracking system corrects their path right away. “If you discover after one block or one turn, ‘Whoops, I made a mistake,’ the GPS will make a couple of adjustments,” Renick says. “You’ll be right back on the right road.”

This program attempted to do the same thing for GSU students. And it worked! Black and Hispanic students started graduating at equal or even higher rates than white students. The number of STEM degrees earned by black students increased by 69 percent. The number granted to Hispanic students more than doubled.

But what should students do if their college doesn’t offer this support? They may have to seek help on their own. They could ask a dorm resident advisor, academic advisor, teacher or older classmate for guidance. “There’s nothing to be embarrassed about,” Renick says. “You just need to be a little bold.”

Building up your brain

Struggling in science and engineering is normal. Melisa Carranza Zúñiga remembers that feeling. She is a computer scientist who is currently participating in a training program offered at Google in Mountain View, Calif.

Zúñiga fell in love with computers when she was only a few years old. Her dad encouraged her to play with one at home. “They seemed like magical big boxes of mystery,” she says. “I couldn’t believe how awesome they were.” She decided to be an engineer.

computer, graphics
Melisa Carranza Zúñiga (left) worked on a computer program that simulates biological molecules. She incorporated devices called graphics cards, which are used for video games, into a computer to speed up its calculations.
WFU/Ken Bennett

But her first classes in college were tough. “I was completely confused,” she says. “I was so sure I would have to drop out.” Still, Zúñiga kept studying hard. She did all the exercises in her textbooks. She worked with classmates. And she asked her teacher for help. By the end of the first semester, she had gotten the hang of it.

Zúñiga went on to earn a master’s degree in computer science at Wake Forest University in Winston-Salem, N.C. She worked on a software program — a computer model — that simulates the formation of biological molecules called proteins. This program might one day help researchers design better treatments for illnesses such as Alzheimer’s disease. In July, she started an engineering residency program at Google.

Students shouldn’t feel discouraged if they have trouble, she says. “If you’re feeling dumb, it’s a good sign,” Zúñiga says. “You’re learning something new!”

Ramon Lopez seconds that assessment. Today he’s a physicist at the University of Texas at Arlington. But during his second semester in college, he got a bad grade on a calculus test.

“I decided that there were two possibilities: Either I was really stupid or I had studied very poorly,” he recalls. “And I decided, I don’t think I’m really that stupid, so it must be that the way I had studied was wrong.”

He changed his study habits and worked carefully through the problems in the book. On the next test, he got an A. “Students should always begin by believing in themselves,” he concludes. “And it should take a lot of evidence to prove otherwise.”

Rodolfo Mendoza-Denton compares struggling in science to exercising. He is a psychologist at the University of California, Berkeley. When your legs burn, he notes, you’re getting stronger. And wrestling with a hard science or math problem builds intelligence, he says. “You’re working out your brain.”

Graduate school often poses the biggest hurdle to a student in STEM. It requires advanced research, difficult classes and teaching college students. Many science and engineering grad students want to give up at some point.

“The first year, it’s just crazy,” notes Lopez. “You’re just trying to figure out: ‘How am I going to survive this?’”

And the work isn’t the only problem. Students may feel isolated in a new place where they don’t know anyone.

Minority students should seek a graduate school where they feel comfortable, Lopez says. He suggests that they ask current students whether people are friendly and teachers are supportive. If their cultural identity is important to them, students should look for a school located where they can find the food they like and meet people with similar backgrounds.

The need for community

Much of the world’s cutting-edge science and engineering work happens at what are known as research-intensive universities. Sometimes, though, even the most talented minority graduate students decide they don’t want those jobs.

Kenneth Gibbs, a biologist, has studied this issue. He works at the National Institutes of Health* in Bethesda, Md. Part of his job at its institute of general medical sciences involves studying science education and diversity. Gibbs’ team surveyed 1,500 people who had just received PhDs in biomedical sciences. They asked the participants how interested they were in working at research universities. Then they compared responses between graduates with similar levels of accomplishments, confidence and support from advisors.

Black, Hispanic and Native American graduates were 40 to 54 percent less likely than white and Asian men to be very interested in becoming professors at research universities. White and Asian women were 36 percent less likely than their male counterparts to express strong interest. (Women also are underrepresented in science.) The researchers published their results three years ago in PLOS ONE.

Underrepresented minority researchers might feel like they won’t fit in at a research university. Few of their colleagues may be of the same race or ethnicity. Perhaps others at their graduate school have treated them in a biased way or did not value their work.

“People need to feel as though they belong,” Gibbs points out. Universities should build better communities for scientists from underrepresented groups, he says.

Where a school is not supportive, minority researchers may need to look for peers online. Some people connect on Twitter. They can search for terms such as #BLACKandSTEM or #SACNAS (the name of an organization for Chicanos, Hispanics and Native Americans in science). “You won’t be alone if you go down this path,” Gibbs says.

A chance to make a difference

The number of black, Hispanic and Native American scientists and engineers is growing. For example, in 1995, underrepresented U.S. minorities earned about 4 percent of PhDs in STEM. Within two decades, that fraction had roughly doubled. But when people imagine a typical scientist, many still picture a white man.

Jani Ingram doesn’t fit that picture. She is a chemist at Northern Arizona University in Flagstaff. She’s also a member of the Navajo Nation. (The Navajo are one of many Native American tribes in North America.) Growing up, she liked math and sports. Now, she studies the effects of mine pollution on a Navajo reservation.

Navajo, sample
Jani Ingram and her students collect samples on a Navajo reservation in Arizona. They are studying how pollution from an old uranium mine has affected the area’s water, soil, plants and livestock.
Ingram Lab

Earlier this year, Ingram visited another university. A white male scientist showed her around. Then another woman met them for the tour. She kept calling the man “Dr. Ingram.” Finally, the man pointed at his guest and said, “No, this is Dr. Ingram.”

The woman “was so surprised,” Ingram recalls.

Her Native American students have had similar encounters. When they go to scientific meetings, some people seem to think they are conference center staff members instead of fellow researchers.

These incidents are tough. And it’s natural to feel mad. But Ingram advises simply pointing out, politely, that they were wrong. “Usually, the person gets embarrassed,” she says.

Black, Hispanic and Native American students still face obstacles in STEM. But determination can go a long way. Their reward is a career tackling some of the most pressing issues the world faces. “This is a chance for you to use your brainpower to solve important, hard problems,” Gibbs says of a STEM career. “Don’t lose sight of that.”

NEXT WEEK: “Disabilities don’t stop top tech and science experts

* Disclosure: Author Roberta Kwok has written articles for the National Cancer Institute. It’s one of the National Institutes of Health, as is Gibbs’ institution.

Power Words

(for more about Power Words, click here)

academic     Relating to school, classes or things taught by teachers in formal institutes of learning (such as a college).

Alzheimer’s disease     An incurable brain disease that can cause confusion, mood changes and problems with memory, language, behavior and problem solving. No cause or cure is known.

biology     The study of living things. The scientists who study them are known as biologists.

biomedical     Having to do with medicine and how it interacts with cells or tissues.

chemistry     The field of science that deals with the composition, structure and properties of substances and how they interact. Scientists use this knowledge to study unfamiliar substances, to reproduce large quantities of useful substances or to design and create new and useful substances. (about compounds) Chemistry also is used as a term to refer to the recipe of a compound, the way it’s produced or some of its properties. People who work in this field are known as chemists.

climate change     Long-term, significant change in the climate of Earth. It can happen naturally or in response to human activities, including the burning of fossil fuels and clearing of forests.

citizen science     Scientific research in which the public — people of all ages and abilities — participate. The data that these citizen “scientists” collect helps to advance research. Letting the public participate means that scientists can get data from many more people and places than would be available if they were working alone.

code     (in computing) To use special language to write or revise a program that makes a computer do something.

colleague     Someone who works with another; a co-worker or team member.

computer model    A program that runs on a computer that creates a model, or simulation, of a real-world feature, phenomenon or event.

computer program     A set of instructions that a computer uses to perform some analysis or computation. The writing of these instructions is known as computer programming.

computer science     The scientific study of the principles and use of computers. Scientists who work in this field are known as computer scientists.

diversity    A broad spectrum of similar items, ideas or people. In a social context, it may refer to a diversity of experiences and cultural backgrounds. (in biology) A range of different life forms.

ecology     A branch of biology that deals with the relations of organisms to one another and to their physical surroundings. A scientist who works in this field is called an ecologist.

engineering     The field of research that uses math and science to solve practical problems.

ethnicity     (adj. ethnic) The background of an individual based on cultural practices that tend to be associated with religion, country (or region) of origin, politics or some mix of these.

factor     Something that plays a role in a particular condition or event; a contributor.

federal     Of or related to a country’s national government (not to any state or local government within that nation). For instance, the National Science Foundation and National Institutes of Health are both agencies of the U.S. federal government.

field     An area of study, as in: Her field of research was biology. Also a term to describe a real-world environment in which some research is conducted, such as at sea, in a forest, on a mountaintop or on a city street. It is the opposite of an artificial setting, such as a research laboratory.

glacier     A slow-moving river of ice hundreds or thousands of meters deep. Glaciers are found in mountain valleys and also form parts of ice sheets.

global positioning system   Best known by its acronym GPS, this system uses a device to calculate the position of individuals or things (in terms of latitude, longitude and elevation — or altitude) from any place on the ground or in the air. The device does this by comparing how long it takes signals from different satellites to reach it.

graduate school     A university program that offers advanced degrees, such as a Master’s or PhD degree. It’s called graduate school because it is started only after someone has already graduated from college (usually with a four-year degree).

implicit bias     To unknowingly hold a particular perspective or preference that favors some thing, some group or some choice — or, conversely, holds some unrecognized prejudice against it.

internship     A training program where students learn advanced professional skills by working alongside experts. People who participate in these training programs are called interns. Some intern in medicine, others in the sciences, journalism or business.

major     (in education) A subject that a student chooses as his or her area of focus in college, such as: chemistry, English literature, German, journalism, pre-medicine, electrical engineering or elementary education.

Master’s degree     A university graduate degree for advanced study, usually requiring a year or two of work, for people who have already graduated from college.

mentor     An individual who lends his or her experience to advise someone starting out in a field. In science, teachers or researchers often mentor students or younger scientists by helping them to refine their research questions. Mentors also can offer feedback on how young investigators prepare to conduct research or interpret their data.

meteorologist     Someone who studies weather and climate events.

molecule     An electrically neutral group of atoms that represents the smallest possible amount of a chemical compound. Molecules can be made of single types of atoms or of different types. For example, the oxygen in the air is made of two oxygen atoms (O2), but water is made of two hydrogen atoms and one oxygen atom (H2O).

NASA     Short for the National Aeronautics and Space Administration. Created in 1958, this U.S. agency has become a leader in space research and in stimulating public interest in space exploration. It was through NASA that the United States sent people into orbit and ultimately to the moon. It also has sent research craft to study planets and other celestial objects in our solar system.

National Institutes of Health (or NIH)    This is the largest biomedical research organization in the world. A part of the U.S. government, it consists of 21 separate institutes — such as the National Institute of General Medical Sciences (which both conducts internal research and finances research by others into basic biological processes and that may lead to better disease diagnosis, treatment and prevention) — and six additional centers. Most are located on a 300 acre facility in Bethesda, Md., a campus containing 75 buildings. The institutes employ nearly 6,000 scientists and provide research funding to more than 300,000 additional researchers working at more than 2,500 other institutions around the world.

National Oceanic and Atmospheric Administration (or NOAA)     A science agency of the U.S. Department of Commerce. Initially established in 1807 under another name (The Survey of the Coast), this agency focuses on understanding and preserving ocean resources, including fisheries, protecting marine mammals (from seals to whales), studying the seafloor and probing the upper atmosphere.

Native Americans     Tribal peoples that settled North America. In the United States, they are also known as Indians. In Canada they tend to be referred to as First Nations.

network     A group of interconnected people or things.

nutrition     (adj. nutritious) The healthful components (nutrients) in the diet — such as proteins, fats, vitamins and minerals — that the body uses to grow and to fuel its processes. A scientist who works in this field is known as a nutritionist.

online     (n.) On the internet. (adj.) A term for what can be found or accessed on the internet.

peer     (noun) Someone who is an equal, based on age, education, status, training or some other features. (verb) To look into something, searching for details.

PhD     (also known as a doctorate) A type of advanced degree offered by universities — typically after five or six years of study — for work that creates new knowledge. People qualify to begin this type of graduate study only after having first completed a college degree (a program that typically takes four years of study).

physicist     A scientist who studies the nature and properties of matter and energy.

population     (in biology) A group of individuals from the same species that lives in the same area.

prairie     A type of fairly flat and temperate North American ecosystem characterized by tall grasses, fertile soils and few trees.

protein     A compound made from one or more long chains of amino acids. Proteins are an essential part of all living organisms. They form the basis of living cells, muscle and tissues; they also do the work inside of cells. Among the better-known, stand-alone proteins are the hemoglobin (in blood) and the antibodies (also in blood) that attempt to fight infections. Medicines frequently work by latching onto proteins.

psychologist     A scientist or mental-health professional who studies the human mind, especially in relation to actions and behaviors.

resident advisor    An older college student who lives in a dorm to advise and aid younger students on how to succeed as a student living away from home.

rodent     A mammal of the order Rodentia, a group that includes mice, rats, squirrels, guinea pigs, hamsters and porcupines.

simulate     (in computing) To try and imitate the conditions, functions or appearance of something. Computer programs that do this are referred to as simulations.

software     The mathematical instructions that direct a computer’s hardware, including its processor, to perform certain operations.

species     A group of similar organisms capable of producing offspring that can survive and reproduce.

STEM     An acronym (abbreviation made using the first letters of a term) for science, technology, engineering and math.

Twitter     An online social network that allows users to post messages containing no more than 140 characters.

weather     Conditions in the atmosphere at a localized place and a particular time. It is usually described in terms of particular features, such as air pressure, humidity, moisture, any precipitation (rain, snow or ice), temperature and wind speed. Weather constitutes the actual conditions that occur at any time and place. It’s different from climate, which is a description of the conditions that tend to occur in some general region during a particular month or season.

Readability Score:



Report: K. Eagan et al. The American freshman: National norms fall 2016. Higher Education Research Institute, UCLA. April 2017.

Meeting: T. Renick. Big data and analytics as tools for closing the achievement gap. American Association for the Advancement of Science 2017. February 18, 2017. Boston, Massachusetts.

Journal: K.D. Gibbs et al. Biomedical science Ph.D. career interest patterns by race/ethnicity and gender. PLOS ONE. 9(12): e114736, published online December 10, 2014. doi: 10.1371/journal.pone.0114736.

Journal: L. Hong and S.E. Page. Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proceedings of the National Academy of Sciences. Vol. 101, November 2004, p. 16385. doi: 10.1073/pnas.0403723101.

Watching A Solar Eclipse with the new Dean of the College of Natural Sciences and Mathematics


I had the privilege of watching the solar eclipse with Dr. Curtis Bennett who just happens to be the new dean of the College of Natural Sciences and Mathematics at California State University, Long Beach.  Here are some photos of our special solar eclipse watching party.  We had lots of fun talking and experimenting with different solar eclipse inventions.  It was great to have the dean commenting on the wonderful science that was going on in the sky and right here on Earth.   I love this job.

Bob Barboza, Founder/Director, Barboza Space Center and Kids Talk Radio Science.

Welcome Dr. Curtis Bennett!

The College of Natural Sciences and Mathematics is pleased to announce that Dr. Curtis Bennett will start as the college’s new Richard D. Green Dean on July 31, 2017. IMG_2057.JPGIMG_2058.JPGIMG_2065.JPGIMG_2068.JPGIMG_2040.JPGIMG_2041.JPGBennett is a nationally recognized mathematician with a well-developed understanding of the full range of the responsibilities of a dean of Natural Sciences and MathematiIMG_2061.JPGIMG_2064.JPGcs





NanoRacks Brings Over 30 Payloads to ISS, Including Kaber Satellite and Boy Scouts of America 

NanoRacks Brings Over 30 Payloads to ISS, Including Landmark Kaber Satellite and First-Ever Boy Scouts of America Experiment

Houston, TX – August 16, 2017 – SpaceX’s Dragon spacecraft successfully berthed to the International Space Station (ISS) on Wednesday after their twelfth commercial resupply (CRS) mission launched from Kennedy Space Center’s Launch Complex 39A in Cape Canaveral, Florida. The CRS-12 Dragon carried 32 of NanoRacks’ customer payloads to the ISS.

Notably on this mission was the U.S. Army Space and Missile Defense Command (SMDC) and Adcole-Maryland Aerospace’s Kestrel Eye IIM (KE2M) satellite. This satellite is a technology demonstration seeking to validate the concept of using microsatellites in low-Earth orbit to support critical operations. The overall goal is to demonstrate that small satellites are viable platforms for proving critical path support to operations and hosting advanced payloads.

KE2M is the second flagship satellite in NanoRacks’ Kaber Deployment Program. NanoRacks Kaber Deployment Program allows for a larger EXPRESS class of satellites to be deployed from the International Space Station, up to 100 kilograms. NanoRacks deploys these Kaber-class satellites currently through the Japanese Experiment Module Airlock, and will shift deployments to the NanoRacks Airlock Module when the Company’s commercial Airlock becomes operational (planned for 2019).

On this mission are also three satellites that were selected for flight by NASA’s CubeSat Launch Initiative (CSLI) as part of the twenty second installment of the Educational Launch of Nanosatellites (ELaNa) missions, and sponsored by the NASA Launch Services Program (LSP). These include NASA Jet Propulsion Lab’s (JPL) ASTERIA, Goddard Spaceflight Center’s DELLINGR, and Pennsylvania State University’s OSIRIS-3U. These CubeSats have a target deployment for mid-November.

Additionally, NanoRacks brought 28 DreamUp student experiments to the ISS, which includes the Student Spaceflight Experiments Program Mission 11 (21 MixStix), Israel’s Ramon Foundation (5 MixStix), Cuberider-1, and the Boy Scouts of America (both NanoLab projects).

The Boy Scouts of America (BSA) project, sponsored by the Center for Advancement of Science in Space (CASIS), is the first-ever experiment in space by BSA. The scouts of Troop 209, a part of the Pathway to Adventure Council based in Chicago, are seeking to better understand how bacteria functions in space, and why virulence patterns in space differ from those on Earth.

With the completion of the CRS-12 launch, NanoRacks has now brought over 580 payloads to the International Space Station since 2009.

Read Our Press Release Online

International Music Grants

The NAMM Foundation Announces $675,000 in Grants to Music Education Programs Worldwide

July 6, 2017

The NAMM Foundation has announced that the organization will benefit 24 different music education programs with $675,000 in grants, an increase made possible by NAMM Foundation donors. The beneficiaries, located both domestically and abroad, provide access and instruction to a variety of different communities and demographics. While unique in instrumentation and location, each organization’s mission underscores the Foundation’s commitment to creating and supporting access to quality music education programs to inspire a life-long love of music making.

“From France to Brazil, to Canada and Great Britain and beyond, the recipients of our grants are working to create access and opportunities for all people to experience the joy of making music,” stated Mary Luehrsen, Executive Director of The NAMM Foundation. “It is through the transformative work of nonprofit music service organizations that thousands of people will discover their own musical talents.”

Since its inception in 1994, The NAMM Foundation’s annual grant program has donated more than $16 million in support to domestic and international music education programs, scientific research, advocacy and public service programs related to music making. The grants are funded in part by donations from the National Association of Music Merchants (NAMM) and its 10,300 member companies worldwide.

“We are grateful to the many new and existing donors who have so generously benefitted the NAMM Foundation this past year,” continued Luehrsen. “Their generosity has helped the Foundation expand its grant making efforts to benefit numerous opportunities for people of all ages to experience the joys and benefits of making music.”

The 2017 beneficiaries of The NAMM Foundation grants are as follows:

Anafima Associação Nacional dos Fabricantes de Instrumentos Musicais e Audio LTda (ANAFIMA)

The Brazilian Musical Instruments and Audio Industry Association is led by a mission of creating more musicians. The charity was formed by the ANAFIMA to channel resources directly into creating more music makers. The NAMM Foundation funding will support its efforts to expand National Play Day in 2018 offering free lessons through a network of music stores and companies. A grant will also support promotional efforts through an expanded website and PR outreach to promote the benefits of making music and National Play Day events and music learning opportunities.

Australian Music Association

The Australian Music Association is the trade body for the music products industry, representing wholesalers, manufacturers, retailers and associated services for musical instruments, pro audio, print music, lighting and computer music products. The NAMM Foundation funding supports the expansion of AMA’s commitment to Recreational Music Making and the organization’s Young Warriors program. This outreach and youth development effort is organized in collaboration with regional mental health professionals and youth workers who operate rock bands and hands-on music technology learning in store fronts and community centers. Funding will also support the 2018 Make Music Day Australia.

Coalition for Music Education in Canada

The Coalition for Music Education in Canada (CMEC)’s mission is to raise the awareness and understanding of the role that music education plays in Canadian culture, and to promote the benefits that music education brings to young people. The NAMM Foundation funding supports the expansion of its Music Monday program, a public awareness initiative that engages thousands of music makers and the media in the opportunity to celebrate music making’s vital role in school and in life. The program has engaged national media, politicians and artists in promoting the importance of music education for all children in Canada. CMEC will also continue to advance its Youth4Music program engaging young people in their communities creating a network of youth promoting the benefits and importance of music education.

Dallas Wind Symphony

The Dallas Wind Symphony’s mission is to bring extraordinary musicians and enthusiastic audiences together to celebrate the performance, promotion, and preservation of the music and traditions of the American wind band through concerts, recordings, broadcasts, music education programs, commissions, and projects that nurture the professional development of musicians, composers, and conductors. The NAMM Foundation funding will support their School Band Education Enrichment for all Dallas Independent School District fifth grade students as an introduction to band. Funding also supports the Dallas Wind Symphony summer band camp that provides at-risk and underserved students from the Dallas Independent School District the chance to attend a unique summer band camp presented by the professional musicians of this world-class wind ensemble.

EngAge, Inc.

The EngAge mission is to empower people- intellectually, creatively and emotionally- to do what they do best for the rest of their lives. EngAGE is a national service program that is an outgrowth of NAMM-funded research on the impact of rigorous music and art making on the health and wellbeing of seniors. A first-ever NAMM Foundation grant will support “EngAGE in Music,” an expansion of ongoing EngAGE in Creativity programs, that transforms senior apartment communities into vibrant centers for teaching and learning, artistic exploration, creativity and engagement. Funding support for EngAGE in Music will offer a variety of music programs (taiko drumming, ukulele, choir and other ensemble music opportunities) for low-income seniors residing in Common Bond communities in Minneapolis, MN through a collaboration with the MacPhail Center for Music.

Guitars and Accessories Marketing Association

The Guitar and Accessories Marketing Association (GAMA) is a trade association comprising guitar products manufacturers and distributors with a mission to bring together and grow the guitar community by promoting greater access to learning and playing guitar. The NAMM Foundation funding supports the training of 250-300 school music educators in the coming year through workshops that occur across the country and provides tools to start school-based guitar programs. Through the grant, this long-running program has substantially influenced what is offered in music education curriculum programs in the U.S. today.

Guitars in the Classroom

Guitars in the Classroom (GITC) trains and equips classroom teachers to integrate singing and playing guitar into children’s daily school experiences. By providing instruction, access to instruments, resource materials, and program supervision, GITC empowers educators to transform classrooms into musical environments that bring out the best in all students by engaging them in studies across the curriculum. The NAMM Foundation funding will support the “Triangle Training Approach” – workshops and teacher training to support teachers as they integrate guitar and ukulele into the elementary curriculum.

John Lennon Educational Tour Bus

The John Lennon Educational Tour Bus is a non-profit 501(c)(3) state-of-the-art mobile audio and HD video recording and production facility. The NAMM Foundation funding supports a school and community residency in school year 2017-18 featuring student workshops on The John Lennon Educational Tour Bus, a mobile recording studio that provides hands-on training in music technology. As part of the residency, The NAMM Foundation hosts a community-wide, town hall style SupportMusic Community Forum as a national webcast that celebrates the community’s commitment and support for music education for all students. A school district/community is selected based on a submission to a “What Makes Music Education Great in My District” video contest that is held each fall.

Little Kids Rock

The mission of Little Kids Rock is to restore and revitalize music education in U.S. public schools. It provides free musical instruments and music instruction to underserved schools across the country. The NAMM Foundation funding supports Little Kids Rocks’ Modern Band Rockfest 2017, its 5th annual national teacher training conference. This week-long teacher training event guides teachers and administrators in methods to develop “modern band” programs – guitar, drums, keyboard – as part of school music education offerings.

The Mr. Holland’s Opus Foundation

The Mr. Holland’s Opus Foundation (MHOF) expands and boosts music education in schools by providing durable, high-quality musical instruments to deserving, under-funded music programs nationwide. MHOF also helps schools advance best practices to ensure the longevity of these vital programs. The NAMM Foundation funds will assist MHOF in selecting and providing new instruments to supply two school music programs.

Music For All

Music For All/UK is the charity attached to the UK musical instrument industry. The organization serves to make more musicians. The charity will use The NAMM Foundation grant to align its Learn to Play Day in 2017 with the global Make Music Day UK music events and to expand the reach and ambition of the project. The Learn to Play Day annual event enables the public to have free lessons at UK music retail stores. The goal is to expand Learn to Play Day to a week-long event that culminates in UK-wide Make Music Day being developed with partners that include the BBC, musicians’ union and others. As part of an expanding NAMM-member-led network, Music for All will also share its community event resources with MI organizations in Brazil, Spain and Germany.

Musical Futures Australia

Musical Futures, a program created in the UK and with NAMM support, will offer training to teachers in schools. The program is designed to extend the reach of music education into the local school systems across Asia using the Musical Futures approach to teaching and learning. A grant supports the project’s immediate goals to increase access to music making through: the development of a network of schools and highly skilled teachers who can facilitate and lead music education in their local cities and communities; creating an infrastructure and means to transfer the skills and approach to local teachers and school systems; broaden the base of music making opportunities to include recreational/community music making for young students; and address the barriers and impediments that restrict access to music making across school systems.

National Piano Foundation

The mission of the National Piano Foundation is to develop educational programs, activities and materials which educate the general public, parents and students about the value, benefit and enjoyment of playing the piano; contribute to the professional well-being of the teaching community; support the music study success of piano users; and promote the productive interaction and cooperation of all segments of the music industry. The NAMM Foundation funds will support the continuance of the National Piano Foundation’s (NPF) training for piano teachers in collaboration with Music Teachers National Association (MTNA). The grant also supports a new program, Keyboards in the Classroom, and the development and piloting of a new classroom curriculum and teacher training modeled after a high-impact program in a Texas public school. This “teaching the teacher” program seeks to reach thousands of more students through group keyboard lessons and compel piano and piano lab purchases as part of music education infrastructure needs in public schools.

National String Project Consortium

The National String Project Consortium (NSPC) is a coalition of String Project sites based at colleges and universities across the United States. The NSPC is dedicated to increasing the number of children playing stringed instruments, and addressing the critical shortage of string teachers in the United States. The NAMM Foundation funding support will provide teacher training for string music educators and offer training to teach strings in inner-city and under-served communities. Funding will support the emerging programs of four existing sites at Pacific University, Kennesaw State University, Southern Mississippi University, and University of Texas at El Paso, as well as a new site at Tennessee Tech University.

Notes for Change, Inc.

Notes for Change, Inc. seeks to empower students through the experience of musical study and increasing access to music education. The organization’s goals are to promote life skills and community through musical training, and advocate for music education. The NAMM Foundation funding will expand the Ensemble Newsletter readership by distributing in formats that provide access through all means across the global Sistema. Support will also raise awareness through a social media campaign.

Orchestre a’ L’Ecole

Orchestre A L’Ecole, a non-profit music trade association in France, aims to develop the musical abilities of young people in schools in disadvantaged areas. The NAMM Foundation funding will support the continued expansion and provide instruments for students regardless of the personal financial resources of schools and students. As of September 2016, this program of youth orchestra development in France has increased to include 1,200 orchestras throughout the country and hosts national and regional festivals.

Percussion Marketing Council

The Percussion Marketing Council’s mission is to provide professional marketing and advertising campaigns, programs and activities that bring increased public awareness to drumming, thus increasing the number of people playing all types of drums. The NAMM Foundation funding supports four key PMC program areas: Drum Set in the Classroom (DSC) that offers in-school drum set workshops with a goal to create more drummers and familiarity with drum set music making; expansion of Percussion in the Schools (PIS) to include more in-school events and cultivate more professional facilitators; Drums Across America based on PMC’s successful drum lesson lab tent at select Vans Warped Tour in the summer and increase the lesson lab activities in school and community settings; and International Drum Month, an annual promotion and percussion celebration effort.

Percussive Arts Society

Percussive Arts Society (PAS) is a non-profit, music service organization. Its mission is to promote percussion education, research, performance and appreciation throughout the world. The NAMM Foundation funding supports its expansion of the Indianapolis-based Find Your Rhythm! Community Outreach program. The grant will continue its work with Indianapolis-area school districts via tours and hands-on programs at Rhythm! Discovery Center that also serve the general public with exposure to music education and percussion in its Saturday programs.

San Diego Youth Symphony

The San Diego Youth Symphony (SDYS) and Conservatory instills excellence in the musical and personal development of students through rigorous and inspiring musical-training experiences. The NAMM Foundation funding supports SDYS Community Opus after-school programs in Chula Vista, CA (CVESD). As the district builds its district-wide music education program, the Opus after-school program fill a gap of access for students who do not yet have in-school music and students who want a more advanced music ensemble experience. The NAMM Foundation support for the SDYS Community Opus in Chula Vista has been a catalyst for the re-instatement of music education in the district including the hiring of over 70 fulltime certified music and arts educators.

SongwritingWith: Soldiers

SongwritingWith: Soldiers (SW:S)’s mission is to transform lives by using collaborative songwriting to expand creativity, connections and strengths. Soldiers (SW:S) connects veterans with professional songwriters in retreat and workshop settings to craft songs about combat, the transition home and address issues of PTSD, connectedness and social isolation that can occur after military service. The program serves all branches of the military populations. Retreats are free to participants and their family/caregiver. The NAMM Foundation will support two SongwritingWith: Soldiers retreats.

The Sphinx Organization, Inc.

Founded in 1996, the Sphinx Organization is a Detroit-based national performing arts organization dedicated to transforming lives through the power of diversity in the arts. The NAMM Foundation funding will support the organization’s summer academy that provides music education and a pathway to exemplary achievement in classical music for Black and Latino student musicians.

Technology Institute for Music Educators (TI:ME)

The Technology Institute for Music Educators (TI:ME) is a non-profit organization whose mission is to assist music educators in applying technology to improve teaching and learning in music. The NAMM Foundation grant will support the TI:ME Technology Leadership Academy for pre-service music education teachers. Selected through a competitive, national application process, 20 participants who are in the final years of preparation to be music teachers, will attend the academy to be held in conjunction with the TI:ME National Conference and learn various methods for using music technology as part of standards-based music education curriculum.

VH1 Save the Music Foundation

VH1 Save the Music Foundation develops long-term, sustainable instrumental music programs in high-need public schools. In 2014, they created the KEYS + Kids Piano Grant Program to respond to the demand for high-quality piano packages for music, drama and community programs in K-12 schools. The NAMM Foundation funding will provide two targeted KEYS + Kids grants to qualifying schools in the 2017-18 school year.

Young Audiences Arts for Learning

A grant to Young Audiences (YA), a national non-profit that connects educators to community music and arts education resources, continues a collaboration with The NAMM Foundation to strengthen the capacities of music service organizations. YA will organize a series of forums and roundtables at The NAMM Show 2018 along with online resources to strengthen music making service organizations around issues of non-profit management including board governance, fund raising, promotion and program evaluation and implementation that includes alignment with national fine arts standards.

About The NAMM Foundation

The NAMM Foundation is a non-profit supported in part by the National Association of Music Merchants and its 10,300 members around the world. The NAMM Foundation works to advance active participation in music making across the lifespan by supporting scientific research, philanthropic giving and public service programs. For more information about The NAMM Foundation, please visit


Chalise Zolezzi


Director of PR and Social Media

Phone: (760) 438-8001


About NAMM

The National Association of Music Merchants (NAMM) is the not-for-profit association with a mission to strengthen the $17 billion music products industry. NAMM is comprised of approximately 10,300 members located in 104 countries and regions. NAMM events and members fund The NAMM Foundation‘s efforts to promote the pleasures and benefits of music, and advance active participation in music making across the lifespan. For more information about NAMM, please visit, call 800.767.NAMM (6266) or follow the organization on Facebook, Instagram and Twitter.

Who wants to publish our research on growing plants faster on Mars?

Our Occupy Mars Tiger Team has been invited to write a professional paper on how we plan on growing food faster on the planet Mars.  Who wants the assignment?



Author Instructions

Plant Direct is a sound science journal for the plant sciences that give prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution.

Manuscript Types

Editorial: These manuscripts serve as opinion pieces and are invitation only. Bespoke editorials that are not requested the Editor-in-Chief will not be permitted for peer review.

Original Research Articles: Includes primary research articles, negative reports with justifications, replication studies, and other studies that contribute to the advancement of the field.

Corrigendum: All requests for corrections should first be submitted to the editorial office at .There is no publication fee charged for Corrigenda.

All submitted manuscripts will be screened by our CrossCheck similarity software. The journal reserves the right to return any manuscript that is deemed to have too much textual similarity to other published works even if the similar texts are cited properly. In these matters, the journal follows COPE guidelines.

To find out more about CrossCheck visit

Submission requirements

To represent our support of a global identifier and standardization in academic publishing, we require that all authors include a valid ORCID ID and email address during the submission process. Peer review of manuscripts will not commence until this information has been provided for all authors.

There are two ways to add your ORCID ID:1. On the Plant Direct Submission Homepage , click the “Use an Existing ID” to log into your ORCID ID and register it with Plant Direct.2. If you are already logged into the Plant Direct Submission Site, go to the “Modify Profile/Password” link at the bottom of the page underneath General Tasks. On the next page, go to the ORCID field to add the ID.Please Note: The email provided during submission must match the email associated with your ORCID account. If these emails are different, you will not be able to link the two accounts. At this time, each author must add their ORCID information individually. The system does not currently allow author information to be updated on behalf of an author.

Preprint policy

Plant Direct enthusiastically endorses the use of preprint servers. To show our enthusiasm, all manuscripts published using a preprint service before submission to the journal will be eligible for a discount. Please note that proof of prior upload to a preprint server (such as a valid link to the preprint server paper) must be provided during submission in order to qualify for the discount. At this time, we are not able to extend the discount to papers uploaded to a preprint server after the manuscript has already been submitted to Plant Direct.

We encourage authors to upload papers to the BioRxiv ( preprint server and use the direct submission option to submit their manuscripts to Plant Direct.

At this time, we also extend the APC discount to papers previously uploaded to the preprint servers Arxiv ( and Peerjpreprints (

If you have used a different preprint server that is not listed above, please contact the editorial office for guidance.

General Instructions

Manuscripts must be submitted in grammatically correct English. Manuscripts that do not meet this standard cannot be reviewed. Authors for whom English is a second language may wish to consult an English-speaking colleague or consider having their manuscript professionally edited before submission to improve the English. A list of independent suppliers of editing services can be found at All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication.

A manuscript is considered for review and possible publication on the condition that it is submitted solely to Plant Direct, and that neither the manuscript nor a substantial portion of it is under consideration elsewhere.

Manuscript Preparation

In order to make the submission process as easy as humanly possible, we place very few restrictions on the way in which you prepare your article and it is not necessary to try to replicate the layout of the journal in your submission. We ask only that you consider your reviewers by ensuring that your manuscript is presented in a clear, generic and readable layout, and that all relevant sections are included. Line numbers are often helpful to reviewers. Fonts and spacing are not mandatory but do remember that the more readable your manuscript, the easier it will be for editors and reviewers to properly evaluate it. Post-acceptance, our production team will ensure that the paper is formatted and designed according to our journal style.

Please use the list below as a checklist to ensure the manuscript has all the information necessary for a successful review:

  • Title page, including title, authors list along with authors’ names, authors’ affiliations, and contact information
  • Abstract and 4–6 keywords
  • Text (introduction, materials and methods, results, discussion)
  • Literature cited (see below for tips on references)
  • Tables (may be sent as a separate file if necessary)
  • Figure legends
  • Acknowledgements, including details of funding bodies with grant numbers

Please keep the following guidelines in mind while preparing your article for Plant Direct:

  • Write for a wide audience of plant biologists.
  • Avoid abbreviations and define those that are necessary on first use.
  • Provide background info in the Introduction.
  • Cite previous publications supporting your work.
  • Cite primary research (not reviews) when possible; note that citation of recent research articles is not a substitute for citing original discoveries.
  • Avoid “data not shown” or “unpublished results” – critical data must be available, or should not be cited.
  • Citation to work “submitted” or “in preparation” is not permitted; all cited work must be on a preprint server, published or accepted and in press.
  • Discussion should not repeat the Results, but explore the implications of the Results.
  • Be concise.

Abstract (Maximum of 500 words)

Briefly describe the manuscript’s purpose, your hypothesis, methods, results and conclusions.


  • Should be complete enough that other laboratories can replicate results.
  • Standard procedures should be referenced with variations specifically described.
  • Include complete description of experimental design and any statistical methods used.
  • Describe novel DNA constructs, genetic stocks, enzyme preparations, antibodies and other reagents, and analytical software sufficiently to allow their reproduction. Provide any genes or new sequence data discussed in the article. Novel nucleotide and amino acid sequences must be deposited in a public repository such as the GenBank database (
  • The penultimate section should be Accession Numbers. Insert the following and list accession numbers: Sequence data from this article can be found in the EMBL/GenBank data libraries under accession number(s) XX000000 (list the locus identifier or gene model number where applicable, e.g., Arabidopsis AGI locus identifier, maize ZEAMMB73 number, rice OsXXg number, etc.).
  • If a list of accession numbers is in a table or figure, identify which one.
  • Accession numbers for genes must be specific for each gene; accession numbers for BAC clones or chromosomes are not acceptable substitutes.
  • List numbers for any supplemental data placed in a permanent public repository (e.g., GEO, or Protein Data Bank
  • The last section should list all Supplemental Data files (titles only).

Author Contributions and Acknowledgments

Contribution to a manuscript must be substantive to justify authorship. An author is responsible for major aspects of the research presented. The corresponding author is responsible for ensuring that all authors have made bona fide, substantive contributions to the research and have seen and approved the manuscript in final form prior to submission. We recommend the guidelines of the International Committee of Medical Journal Editors (ICMJE) for authorship and contributorship, which stipulates that all those designated as authors should meet all four of the following criteria (

  1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
  2. Drafting the work or revising it critically for important intellectual content; AND
  3. Final approval of the version to be published; AND
  4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Each article must include an Author Contributions section (to appear after Acknowledgments) that explains how each author contributed to the research and/or writing of the manuscript. Note which of the following tasks each author performed: designed the research; performed research; contributed new analytic/computational/etc. tools; analyzed data; or wrote the paper. All other contributors should instead be acknowledged appropriately in the Acknowledgments section, and authors should seek written permission to include any individuals mentioned in acknowledgments.


Upon first submission, references may be submitted in any standard format (e.g. AMA style).

Figure legends

  • Provide a short title.
  • Describe each panel.
  • Define symbols and abbreviations.
  • Define error bars.
  • Move accession numbers to end of Methods.
  • Separate from the Figures.

Figure preparation

  • Ensure that label text is highly visible and explanatory text only appears in the figure caption/legend.
  • Ensure that all axes and figure elements are well-defined and explained, but avoid unnecessary text.
  • Include (and define) error bars where appropriate.
  • Avoid complex hatched patterns – use simple patterns and color schemes. Make consistent use of color throughout a manuscript (e.g. use the same color or pattern for wild type and different genotypes/treatments in each figure where possible).
  • Ensure that multiple panels in a figure are evenly spaced.

If necessary, we will request higher-quality figures prior to production of proofs. Figures should be conceptual and unambiguous. Guiding principles of good figure preparation are listed below. Click on or follow the “detailed figure guidelines” link below for additional information and examples. See links below on inappropriate figure manipulation and preparing figures for color vision-deficient readers.

Detailed figure guidelines (

Figure manipulation

Plant Direct does not allow certain electronic enhancements or manipulations of micrographs, gels, or other digital images using Photoshop or any other software. If multiple images are collected into a single figure, be sure to separate them clearly with lines. If a digital tool is used to adjust contrast, brightness, or color, it must be applied uniformly to an entire image; targeted alteration of only part of an image is prohibited. Plant Direct reserves the right to ask authors to provide supporting data on which figures were based. Please refer to J Cell Biol 158: 1151 ( for guidance on acceptable and unacceptable digital image manipulation.

Preparing figures for color vision-deficient readers

Many readers of the Journal (1 in 12, on average) have some form of color-deficient vision; therefore, when preparing your figures, please observe the following guidelines to ensure that all readers will be able to comprehend your data.

  • In fluorescent double-staining micrographs and DNA chips, do not use the combination of red and green; use magenta and green instead.
  • For micrographs with triple or more channels, additionally show either grayscale image of each channel or the combination of the two most important channels in magenta and green.
  • For graphs and line drawings, label elements on the graph itself rather than making a separate color-coded key. Do not try to convey information in color only, but use BOTH color and shape (solid and dotted lines, different symbols, various hatchings, etc.).
  • For more information, see the following web site:

Supplemental materials

Data and methods that are integral to the main conclusions of the article must be presented in the main manuscript; for example, it is not acceptable to put critical results or methods into supplemental materials in an attempt to shorten the main text. Supplemental figures and tables should be prepared to the same standards of quality and visual appeal as regular manuscript figures and tables, with all data and elements of the figures clearly defined and fully explained. Manuscripts that have been accepted or for which revision has been requested should follow the guidelines below for preparation of Supplemental Figures, Tables, and Data Sets.

  • Combine multiple supplemental figures and tables into a single PDF (10 MB max).
  • Include a title and complete legend for each item.
  • Briefly refer to each item in Results or Methods (e.g., Supplemental Figure 1).
  • List the titles of each piece of material at the end of your Methods.

Detailed Supplemental Data Guidelines

What constitutes supplemental material?

  • Large-scale data sets and other data that is impractical to include in the main manuscript.
  • Detailed experimental protocols or additional supporting data that would be of interest only to specialists.

Large-scale data sets

Large-scale data sets (e.g., complete or draft genome sequences, genome annotations, genetic maps, EST data sets, transcript profiles, proteomic data sets, metabolic profiles, next-gen sequencing data and plant phenotyping image datasets) that are integral to the manuscript must be provided at time of manuscript submission. These include data from small RNA, mRNA, specialized RNA libraries, ChIP-seq, whole-genome re-sequencing or genotyping, whole-genome bisulfite sequencing, etc.

At the time of publication, these large-scale data sets must be available to readers in a permanent public repository with open access (e.g., GEO, Array-Express, NCBI’s Short Read Archive sequence database; the microRNA database or a general purpose data repository such as Zenodo) as they will not be stored at Plant Direct permanently, only during the review process if necessary. Full data sets must be released, even if only a subset of the data was selected for use in the analysis. Image datasets should be provided with the corresponding extracted data (e.g. as a .csv file). Non-permanent URLs may be provided additionally at the option of authors as a means to enable readers to access or query information more conveniently. Non-permanent URLs may also be provided for software and unusual file types requiring special software downloads or those that are not compatible with Plant Direct website. The Methods section should also contain the following information: algorithms and parameters used in assembly of genomic data; description of procedures for normalization for measurements of transcript abundances; mismatch parameters for genome-matched reads for all libraries; library adapter sequences.

In general, large-scale data sets must be complete (e.g., must include the complete set of genome sequences analyzed, ESTs identified, genes queried in transcript profiling, peptides identified, molecules identified, etc.). When appropriate and suitably sized, these should be provided in comma separated value (csv) format for publication on Plant Direct site (not as PDF files); otherwise they should be made available via public databases. Data supporting transcript profiling experiments must include complete sequence information (e.g., accession numbers, any relevant annotation data, and in the case of Arabidopsis, TAIR locus identifiers []). Authors are encouraged to follow the MIAME (Minimal Information for a Microarray Experiment) standards for microarray analyses For plant phenotyping datasets, authors are encouraged to follow the MIAPPE (Minimum Information about Plant Phenotyping Experiment) standards (

Genome sequencing

The entire raw sequence data on which the genome is based, the final assembled version, and the complete annotation (insofar as possible) of the assembled genome must be available at a public repository at the time of publication. Typical files available for download would include, for example, the genome sequences (contigs or pseudomolecules as FASTA files), a GFF or GTF file describing the gene models, together with cDNA, CDS, and protein sequences as FASTA files. Depending on the focus of the work, information about contig scaffolding and additional annotated features such as transposable elements, miRNAs and ncRNAs may be required.

Peer review

Members of the editorial board will evaluate all manuscripts upon submission to determine whether they are appropriate for evaluation by external expert reviewers.

At submission, authors are required to suggest a minimum of two reviewers. All reviewers will be vetted for legitimacy but authors should take care not to suggest people who have a conflict of interest as defined by the ASPB policy (

While authors’ suggested reviewers may be considered, Plant Direct editors are permitted to use any reviewer reasonably believed to be an appropriate scientific expert, except reviewers who would be excluded by ASPB’s conflict of interest policy.

If authors wish to request the exclusion of certain reviewers for other reasons, specific justification must be provided; such requests may be considered at the discretion of the editor.

Publication process

After the review, authors will receive one of the following decisions regarding their paper:

Accept: Paper is deemed suitable for publication. Publication is dependent on receipt of any final changes/proofs and payments.

Revision Requested: Some experimentation and/or revision is required

Reject: In light of the reviewers’ and editors’ comments and evaluations, the manuscript does not meet the standards for publication in Plant Direct. Decline to further consider: Our editors find this paper too far outside of their area of expertise to properly evaluate and manage. We are withdrawing this paper from consideration and returning it to the authors in a timely manner so as not to affect or delay the chances of publishing it elsewhere.

Turnaround Times

Decisions will be made as rapidly as possible. If our editors feel the paper is too far outside of their area for them to properly evaluate, the manuscript will be returned to the authors with a “Decline to Further Consider” decision within three weeks.

If revision is requested, the editorial board will evaluate revised manuscripts and determine whether outside review is required. Plant Direct strongly encourages authors to first deposit manuscripts to preprint servers so that any peer-review delays have no effect on the scientific community’s ability to access the science.

The board will strive to render a decision after only one revision. Requested revisions must be submitted within 2 months unless an extension is granted.

If the authors choose to resubmit a declined manuscript after completing additional experiments, the resubmitted version will be treated as a new manuscript and subject to the full review process.

Accepted articles are published online within five working days, provided payment and the return of final proof files.

Article Publication Charges

All articles published by Plant Direct are fully open access: immediately freely available to read, download and share, and enjoy the benefits of a CC-By license ( To cover the cost of publishing, Plant Direct requires the payment of an Article Publication Charge or APC. Current members of the ASPB and/or the SEB are afforded a discount.

Direct submissions to the Journal from non-society members who do not upload to an approved preprint service prior to submission – $2,200

Direct submissions to the Journal from non-society members who do upload an approved preprint service prior to submission – $1,980

Direct submissions to the Journal from current society members who do not upload to an approved preprint service prior to submission – $1,760

Direct submissions to the Journal from current society members who do upload to an approved preprint service prior to submission – $1,650

Submissions transferred to the Journal from the Supporting Journals that do not upload to an approved preprint service prior to submission – $1,760

Submissions transferred to the Journal from the Supporting Journals that do upload to an approved preprint service prior to submission – $1,650

Appeal Policy

All decision appeals should be formally submitted to the editorial office at Please be sure to include the manuscript ID number, original decision letter, and basis for appeal.

Contact Any other questions or concerns may be sent to the editorial office at

Please press HOME to continue.

How Robots & Algorithms Are Taking Over: Space Mathematics

How Robots & Algorithms Are Taking Over

  • Special Note:  This paper is being used for the Occupy Mars Learning Adventure’s project-based learning program at the Barboza Space Center.  We are training space science “Tiger Teams.”

by Nicholas Carr
Norton, 276 pp., $26.95
CCI/Art Archive/Art Resource

Artwork for the cover of a 1959 issue of the French science fiction magazine Galaxie

In September 2013, about a year before Nicholas Carr published The Glass Cage: Automation and Us, his chastening meditation on the human future, a pair of Oxford researchers issued a report predicting that nearly half of all jobs in the United States could be lost to machines within the next twenty years. The researchers, Carl Benedikt Frey and Michael Osborne, looked at seven hundred kinds of work and found that of those occupations, among the most susceptible to automation were loan officers, receptionists, paralegals, store clerks, taxi drivers, and security guards. Even computer programmers, the people writing the algorithms that are taking on these tasks, will not be immune. By Frey and Osborne’s calculations, there is about a 50 percent chance that programming, too, will be outsourced to machines within the next two decades.

In fact, this is already happening, in part because programmers increasingly rely on “self-correcting” code—that is, code that debugs and rewrites itself*—and in part because they are creating machines that are able to learn on the job. While these machines cannot think, per se, they can process phenomenal amounts of data with ever-increasing speed and use what they have learned to perform such functions as medical diagnosis, navigation, and translation, among many others. Add to these self-repairing robots that are able to negotiate hostile environments like radioactive power plants and collapsed mines and then fix themselves without human intercession when the need arises. The most recent iteration of these robots has been designed by the robots themselves, suggesting that in the future even roboticists may find themselves out of work.

The term for what happens when human workers are replaced by machines was coined by John Maynard Keynes in 1930 in the essay “Economic Possibilities for our Grandchildren.” He called it “technological unemployment.” At the time, Keynes considered technical unemployment a transitory condition, “a temporary phase of maladjustment” brought on by “our discovery of means of economizing the use of labour outrunning the pace at which we can find new uses for labour.” In the United States, for example, the mechanization of the railways around the time Keynes was writing his essay put nearly half a million people out of work. Similarly, rotary phones were making switchboard operators obsolete, while mechanical harvesters, plows, and combines were replacing traditional farmworkers, just as the first steam-engine tractors had replaced horses and oxen less than a century before. Machine efficiency was becoming so great that President Roosevelt, in 1935, told the nation that the economy might never be able to reabsorb all the workers who were being displaced. The more sanguine New York Times editorial board then accused the president of falling prey to the “calamity prophets.”

In retrospect, it certainly looked as if he had. Unemployment, which was at nearly 24 percent in 1932, dropped to less than 5 percent a decade later. This was a pattern that would reassert itself throughout the twentieth century: the economy would tank, automation would be identified as one of the main culprits, commentators would suggest that jobs were not coming back, and then the economy would rebound and with it employment, and all that nervous chatter about machines taking over would fade away.

When the economy faltered in 1958, and then again in 1961, for instance, what was being called the “automation problem” was taken up by Congress, which passed the Manpower Development and Training Act. In his State of the Union Address of 1962, President Kennedy explained that this law was meant “to stop the waste of able- bodied men and women who want to work, but whose only skill has been replaced by a machine, moved with a mill, or shut down with a mine.” Two years later, President Johnson convened a National Commission on Technology, Automation, and Economic Progress to assess the economic effects of automation and technological change. But then a funny thing happened. By the time the commission issued its report in 1966, the economy was approaching full employment. Concern about machines supplanting workers abated. The commission was disbanded.

That fear, though, was dormant, not gone. A Time magazine cover from 1980 titled “The Robot Revolution” shows a tentacled automaton strangling human workers. An essay three years later by an MIT economist named Harley Shaiken begins:

As more and more attention is focused on economic recovery, for 11 million people the grim reality is continued unemployment. Against this backdrop the central issue raised by rampant and pervasive technological change is not simply how many people may be displaced in the coming decade but how many who are currently unemployed will never return to the job.

Unemployment, which was approaching 10 percent at the time, then fell by half at decade’s end, and once more the automation problem receded.

Yet there it was again, on the heels of the economic collapse of 2008. An investigation by the Associated Press in 2013 put it this way:

Five years after the start of the Great Recession, the toll is terrifyingly clear: Millions of middle- class jobs have been lost in developed countries the world over.

And the situation is even worse than it appears.

Most of the jobs will never return, and millions more are likely to vanish as well, say experts who study the labor market….

They’re being obliterated by technology.

Year after year, the software that runs computers and an array of other machines and devices becomes more sophisticated and powerful and capable of doing more efficiently tasks that humans have always done. For decades, science fiction warned of a future when we would be architects of our own obsolescence, replaced by our machines; an Associated Press analysis finds that the future has arrived.

Here is what that future—which is to say now—looks like: banking, logistics, surgery, and medical recordkeeping are just a few of the occupations that have already been given over to machines. Manufacturing, which has long been hospitable to mechanization and automation, is becoming more so as the cost of industrial robots drops, especially in relation to the cost of human labor. According to a new study by the Boston Consulting Group, currently the expectation is that machines, which now account for 10 percent of all manufacturing tasks, are likely to perform about 25 percent of them by 2025. (To understand the economics of this transition, one need only consider the American automotive industry, where a human spot welder costs about $25 an hour and a robotic one costs $8. The robot is faster and more accurate, too.) The Boston group expects most of the growth in automation to be concentrated in transportation equipment, computer and electronic products, electrical equipment, and machinery.

Meanwhile, algorithms are writing most corporate reports, analyzing intelligence data for the NSA and CIA, reading mammograms, grading tests, and sniffing out plagiarism. Computers fly planes—Nicholas Carr points out that the average airline pilot is now at the helm of an airplane for about three minutes per flight—and they compose music and pick which pop songs should be recorded based on which chord progressions and riffs were hits in the past. Computers pursue drug development—a robot in the UK named Eve may have just found a new compound to treat malaria—and fill pharmacy vials.

Xerox uses computers—not people—to select which applicants to hire for its call centers. The retail giant Amazon “employs” 15,000 warehouse robots to pull items off the shelf and pack boxes. The self-driving car is being road-tested. A number of hotels are staffed by robotic desk clerks and cleaned by robotic chambermaids. Airports are instituting robotic valet parking. Cynthia Breazeal, the director of MIT’s personal robots group, raised $1 million in six days on the crowd-funding site Indiegogo, and then $25 million in venture capital funding, to bring Jibo, “the world’s first social robot,” to market.

What is a social robot? In the words of John Markoff of The New York Times, “it’s a robot with a little humanity.” It will tell your child bedtime stories, order takeout when you don’t feel like cooking, know you prefer Coke over Pepsi, and snap photos of important life events so you don’t have to step out of the picture. At the other end of the spectrum, machine guns, which automated killing in the nineteenth century, are being supplanted by Lethal Autonomous Robots (LARs) that can operate without human intervention. (By contrast, drones, which fly without an onboard pilot, still require a person at the controls.) All this—and unemployment is now below 6 percent.

Gross unemployment statistics, of course, can be deceptive. They don’t take into account people who have given up looking for work, or people who are underemployed, or those who have had to take pay cuts after losing higher-paying jobs. And they don’t reflect where the jobs are, or what sectors they represent, and which age cohorts are finding employment and which are not. And so while the pattern looks familiar, the worry is that this time around, machines really will undermine the labor force. As former Treasury Secretary Lawrence Summers wrote in The Wall Street Journal last July:

The economic challenge of the future will not be producing enough. It will be providing enough good jobs…. Today…there are more sectors losing jobs than creating jobs. And the general-purpose aspect of software technology means that even the industries and jobs that it creates are not forever.

To be clear, there are physical robots like Jibo and the machines that assemble our cars, and there are virtual robots, which are the algorithms that undergird the computers that perform countless daily tasks, from driving those cars, to Google searches, to online banking. Both are avatars of automation, and both are altering the nature of work, taking on not only repetitive physical jobs, but intellectual and heretofore exclusively human ones as well. And while both are defining features of what has been called “the second machine age,” what really distinguishes this moment is the speed at which technology is changing and changing society with it. If the “calamity prophets” are finally right, and this time the machines really will win out, this is why. It’s not just that computers seem to be infiltrating every aspect of our lives, it’s that they have infiltrated them and are infiltrating them with breathless rapidity. It’s not just that life seems to have sped up, it’s that it has. And that speed, and that infiltration, appear to have a life of their own.

Just as computer hardware follows Moore’s Law, which says that computing power doubles every eighteen months, so too does computer capacity and functionality. Consider, for instance, the process of legal discovery. As Carr describes it,

computers can [now] parse thousands of pages of digitized documents in seconds. Using e-discovery software with language-analysis algorithms, the machines not only spot relevant words and phrases but also discern chains of events, relationships among people, and even personal emotions and motivations. A single computer can take over the work of dozens of well-paid professionals.

Israel Museum, Jerusalem/Bridgeman Images

‘Bizarre Figures’; etching by Giovanni Battista Bracelli, 1624

Or take the autonomous automobile. It can sense all the vehicles around it, respond to traffic controls and sudden movements, apply the brakes as needed, know when the tires need air, signal a turn, and never get a speeding ticket. Volvo predicts that by 2020 its vehicles will be “crash-free,” but even now there are cars that can park themselves with great precision.

The goal of automating automobile parking, and of automating driving itself, is no different than the goal of automating a factory, or pharmaceutical discovery, or surgery: it’s to rationalize the process, making it more efficient, productive, and cost-effective. What this means is that automation is always going to be more convenient than what came before it—for someone. And while it’s often pitched as being most convenient for the end user—the patient on the operating table, say, or the Amazon shopper, or the Google searcher, in fact the rewards of convenience flow most directly to those who own the automated system (Jeff Bezos, for example, not the Amazon Prime member).

Since replacing human labor with machine labor is not simply the collateral damage of automation but, rather, the point of it, whenever the workforce is subject to automation, technological unemployment, whether short- or long-lived, must follow. The MIT economists Eric Brynjolfsson and Andrew McAfee, who are champions of automation, state this unambiguously when they write:

Even the most beneficial developments have unpleasant consequences that must be managed…. Technological progress is going to leave behind some people, perhaps even a lot of people, as it races ahead.1

Flip this statement around, and what Brynjolfsson and McAfee are also saying is that while technological progress is going to force many people to submit to tightly monitored control of their movements, with their productivity clearly measured, that progress is also going to benefit perhaps just a few as it races ahead. And that, it appears, is what is happening. (Of the fifteen wealthiest Americans, six own digital technology companies, the oldest of which, Microsoft, has been in existence only since 1975. Six others are members of a single family, the Waltons, whose vast retail empire, with its notoriously low wages, has meant that people are much cheaper and more expendable than warehouse robots. Still, Walmart has benefited from an automated point-of-sale system that enables its owners to know precisely what is selling where and when, which in turn allows them to avoid stocking slow-moving items and to tie up less money than the competitors in inventory.)

As Paul Krugman wrote a couple of years ago in The New York Times:

Smart machines may make higher GDP possible, but they will also reduce the demand for people—including smart people. So we could be looking at a society that grows ever richer, but in which all the gains in wealth accrue to whoever owns the robots.

In the United States, real wages have been stagnant for the past four decades, while corporate profits have soared. As of last year, 16 percent of men between eighteen and fifty-four and 30 percent of women in the same age group were not working, and more than a third of those who were unemployed attributed their joblessness to technology. As The Economist reported in early 2014:

Recent research suggests that…substituting capital for labor through automation is increasingly attractive; as a result owners of capital have captured ever more of the world’s income since the 1980s, while the share going to labor has fallen.

There is a certain school of thought, championed primarily by those such as Google’s Larry Page, who stand to make a lot of money from the ongoing digitization and automation of just about everything, that the elimination of jobs concurrent with a rise in productivity will lead to a leisure class freed from work. Leaving aside questions about how these lucky folks will house and feed themselves, the belief that most people would like nothing more than to be able to spend all day in their pajamas watching TV—which turns out to be what many “nonemployed” men do—sorely misconstrues the value of work, even work that might appear to an outsider to be less than fulfilling. Stated simply: work confers identity. When Dublin City University professor Michael Doherty surveyed Irish workers, including those who stocked grocery shelves and drove city buses, to find out if work continues to be “a significant locus of personal identity,” even at a time when employment itself is less secure, he concluded that “the findings of this research can be summed up in the succinct phrase: ‘work matters.’”2

How much it matters may not be quantifiable, but in an essay in The New York Times, Dean Baker, the codirector of the Center for Economic and Policy Research, noted that there was

a 50 to 100 percent increase in death rates for older male workers in the years immediately following a job loss, if they previously had been consistently employed.

One reason was suggested in a study by Mihaly Csikszentmihalyi, the author of Flow: The Psychology of Optimal Experience (1990), who found, Carr reports, that “people were happier, felt more fulfilled by what they were doing, while they were at work than during their leisure hours.”

Even where automation does not eliminate jobs, it often changes the nature of work. Carr makes a convincing case for the ways in which automation dulls the brain, removing the need to pay attention or master complicated routines or think creatively and react quickly. Those airline pilots who now are at the controls for less than three minutes find themselves spending most of their flight time staring at computer screens while automated systems do the actual flying. As a consequence, their overreliance on automation, and on a tendency to trust computer data even in the face of contradictory physical evidence, can be dangerous. Carr cites a study by Matthew Ebbatson, a human factors researcher, that

found a direct correlation between a pilot’s aptitude at the controls and the amount of time the pilot had spent flying without the aid of automation…. The analysis indicated that “manual flying skills decay quite rapidly towards the fringes of ‘tolerable’ performance without relatively frequent practice.”

Similarly, an FAA report on cockpit automation released in 2013 found that over half of all airplane accidents were the result of the mental autopilot brought on by actual autopilot.

If aviation is a less convincing case, since the overall result of automation has been to make flying safer, consider a more mundane and ubiquitous activity, Internet searches using Google. According to Carr, relying on the Internet for facts and figures is making us mindless sloths. He points to a study in Science that demonstrates that the wealth of information readily available on the Internet disinclines users from remembering what they’ve found out. He also cites an interview with Amit Singhal, Google’s lead search engineer, who states that “the more accurate the machine gets [at predicting search terms], the lazier the questions become.”

A corollary to all this intellectual laziness and dullness is what Carr calls “deskilling”—the loss of abilities and proficiencies as more and more authority is handed over to machines. Doctors who cede authority to machines to read X-rays and make diagnoses, architects who rely increasingly on computer-assisted design (CAD) programs, marketers who place ads based on algorithms, traders who no longer trade—all suffer a diminution of the expertise that comes with experience, or they never gain that experience in the first place. As Carr sees it:

As more skills are built into the machine, it assumes more control over the work, and the worker’s opportunity to engage in and develop deeper talents, such as those involved in interpretation and judgment, dwindles. When automation reaches its highest level, when it takes command of the job, the worker, skillwise, has nowhere to go but down.

Conversely, machines have nowhere to go but up. In Carr’s estimation, “as we grow more reliant on applications and algorithms, we become less capable of acting without their aid…. That makes the software more indispensable still. Automation breeds automation.”

But since automation also produces quicker drug development, safer highways, more accurate medical diagnoses, cheaper material goods, and greater energy efficiency, to name just a few of its obvious benefits, there have been few cautionary voices like Nicholas Carr’s urging us to take stock, especially, of the effects of automation on our very humanness—what makes us who we are as individuals—and on our humanity—what makes us who we are in aggregate. Yet shortly after The Glass Cage was published, a group of more than one hundred Silicon Valley luminaries, led by Tesla’s Elon Musk, and scientists, including the theoretical physicist Stephen Hawking, issued a call to conscience for those working on automation’s holy grail, artificial intelligence, lest they, in Musk’s words, “summon the demon.” (In Hawking’s estimation, AI could spell the end of the human race as machines evolve faster than people and overtake us.) Their letter is worth quoting at length, because it demonstrates both the hubris of those who are programming our future and the possibility that without some kind of oversight, the golem, not God, might emerge from their machines:

[Artificial intelligence] has yielded remarkable successes in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems.

As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance are worth large sums of money, prompting greater investments in research….

The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is important to research how to reap its benefits while avoiding potential pitfalls.

The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit…. [Until now the field of AI] has focused largely on techniques that are neutral with respect to purpose. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do.

Just who is this “we” who must ensure that robots, algorithms, and intelligent machines act in the public interest? It is not, as Nicholas Carr suggests it should be, the public. Rather, according to the authors of the research plan that accompanies the letter signed by Musk, Hawking, and the others, making artificial intelligence “robust and beneficial,” like making artificial intelligence itself, is an engineering problem, to be solved by engineers. To be fair, no one but those designing these systems is in a position to build in measures of control and security, but what those measures are, and what they aim to accomplish, is something else again. Indeed, their research plan, for example, looks to “maximize the economic benefits of artificial intelligence while mitigating adverse effects, which could include increased inequality and unemployment.”

The priorities are clear: money first, people second. Or consider this semantic dodge: “If, as some organizations have suggested, autonomous weapons should be banned, is it possible to develop a precise definition of autonomy for this purpose…?” Moreover, the authors acknowledge that “aligning the values of powerful AI systems with our own values and preferences [may be] difficult,” though this might be solved by building “systems that can learn or acquire values at run-time.” However well-meaning, they fail to say what values, or whose, or to recognize that most values are not universal but, rather, culturally and socially constructed, subjective, and inherently biased.

We live in a technophilic age. We love our digital devices and all that they can do for us. We celebrate our Internet billionaires: they show us the way and deliver us to our destiny. We have President Obama, who established the National Robotics Initiative to develop the “next generation of robotics, to advance the capability and usability of such systems and artifacts, and to encourage existing and new communities to focus on innovative application areas.” Even so, it is naive to believe that government is competent, let alone in a position, to control the development and deployment of robots, self-generating algorithms, and artificial intelligence. Government has too many constituent parts that have their own, sometimes competing, visions of the technological future. Business, of course, is self-interested and resists regulation. We, the people, are on our own here—though if the AI developers have their way, not for long.

  1. *Carr discusses integrated development environments (IDEs) which programmers use to check their code, and quotes Vivek Haldar, a veteran Google developer: “‘The behavior all these tools encourage is not ‘think deeply about your code and write it carefully,’ but ‘just write a crappy first draft of your code, and then the tools will tell you not just what’s wrong with it, but also how to make it better.’” 
  2. 1The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies (Norton, 2014), pp. 10–11. 
  3. 2Michael Doherty, “When the Working Day Is Through: The End of Work As Identity?” Work, Employment and Society, Vol. 23, No. 1 (March 2009). 

What do you need to know about an eclipse?

How is the sun completely blocked in an

Image of moon covering sun in a solar eclipse

In this picture of a solar eclipse, the moon is beginning to move from in front of the sun. Credit: NASA

During a total solar eclipse, the moon passes between Earth and the sun. This completely blocks out the sun’s light. However, the moon is about 400 times smaller than the sun. How can it block all of that light?

It all has to do with the distance between Earth and the sun and Earth and the moon.

an illustration of the moon blocking the sun's light during the August 2017 eclipse

An illustration showing the Earth, moon, and sun during the August 21, 2017 eclipse. Image credit: NASA’s Scientific Visualization Studio

When objects are closer to us, they appear to be bigger than objects that are far away. For example, most stars in the night sky look like tiny white dots of light. In reality, many of those stars are larger than our sun—they are just much farther away from Earth!

Even though the moon is 400 times smaller than the sun, it’s also about 400 times closer to Earth than the sun is. This means that from Earth, the moon and the sun appear to be roughly the same size in the sky.

an illustration showing that the sun and the moon appear to be the same size in the sky, but the moon is much closer to Earth than the sun is

Image credit: NASA

So, when the moon comes between Earth and the sun during a total solar eclipse, the moon appears to completely cover up the light from the sun.

However, it won’t always be this way.

Total solar eclipses won’t be around forever!

The moon’s orbit is changing. In fact, the moon’s orbit grows about 1.5 inches (3.8 cm) larger every year. As the moon’s orbit takes it farther and farther away from Earth, the moon will appear smaller and smaller in our sky.

This occasionally happens now. The moon’s orbit isn’t perfectly round. That means that sometimes the moon is slightly farther away from Earth than it is at other times. Sometimes the moon is far enough away that it doesn’t create a total solar eclipse. In this case, the moon obscures most of the sun, but a thin ring of the sun remains visible around the moon.

However, once the moon’s growing orbit takes it approximately 14,600 miles (23,496 km) away from Earth, it will always be too far away to completely cover the sun. That won’t happen for a long time though. If the moon’s orbit grows only 1.5 inches every year, it will take more than 600 million years for total solar eclipses to completely disappear!

article last updated May 22, 2017